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A Denotational Semantics forQuantum Loops
NICOLA ASSOLINI, University of Verona, Italy
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Programming a quantum computer, i.e., implementing quantum algorithms on a quantum processor-based

copmputer architecture, is a task that can be addressed (just as for classical computers) at different levels of

abstraction. This paper proposes a denotational semantics for high-level quantum programming constructs,

focusing on the conceptual meaning of quantum-controlled branching and iteration. We introduce a denota-

tional domain where a mathematical meaning of a quantum control flow with loops can be defined, which

reflects the coherent evolution of the quantum system implementing the program.

Additional Key Words and Phrases: Quantum Computing, Quantum Program Semantics, Denotational Seman-

tics

1 INTRODUCTION
A crucial part of a computer program is its control flow. In classical computing, control flow refers

to the sequencing and branching of instructions within a program, enabling the program to make

decisions and alter its behavior based on specific conditions. This also implies the possibility of

writing programs with conditional loops.

The control flow of quantum programs cannot be interpreted in the same way as for classical

programs due to the properties of the target physical device (where they are intended to be executed),

which behaves according to the laws of quantummechanics. Notably, a quantum processor is able to

work on superpositions of states (qubits) rather than on single ones and, in a more strikingly different

way from a classical computer, it can generate states which are entangled, i.e., tied to each other

by a strong (non-classical) correlation. Moreover, while the results of the execution of a classical

program are immediately available whenever the program reaches the final statement, accessing

the results of a quantum program is not so straightforward, due to the so-called measurement

problem in the theory of quantum mechanics. In fact, although quantum theory is, up to now,

the most precise description of how the world behaves, the interpretation of such a behaviour is

controversial and the debate on which, among the several interpretations that have been proposed,

is the right one is still open and represents the main problem for a complete understanding of

quantum physics.

When analysing a quantum program and studying its mathematical behaviour, it is inevitable to

refer to the interpretation of quantum mechanics. Typically, the quantum programming language

literature refers to one of the most accredited interpretations, which goes under the name of the

Copenhagen interpretation. According to this interpretation, the results of the execution of a

quantum program can only be obtained when the coherent (i.e. in superposition) execution (or

evolution of the quantum system) collapses into a classical state, which occurs randomly both in

time (at a given average rate), and in space (according to the Born rule). This explanation avoids

the measurement problem and leads to modelling the result of a quantum program essentially as a

probability distribution on all its possible outcomes.

In this paper, we aim at a description of a quantum program that is as general as possible

by avoiding an explicit syntactic construct for measurement, which would effectively lead to a

(classical) probabilistic semantics of the program. Moreover, in giving a meaning to a quantum

program, we will concentrate on the denotational approach, following Strachey’s observation that
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fixing the domain within which programs in a given language have their meanings tell us a great

deal about the language, and is a sure guide to the design of the language [21].

At this point, a crucial question arises: how can we handle termination in quantum loops? In the

Turing machine model of classical computation, we can use a halting bit to signal termination.

However, as analyzed in [8, 10, 11, 18, 19], defining such a halting qubit is not possible is not

possibile in a Turing machine model for quantum computation, without compromising the all

computation. Unlike classical loops, where execution can be stopped based on the guard’s value,

measuring a quantum guard would make a quantum superposition collapse to a classical state, thus

altering the computation itself. Quantum languages that rely on measurement-based control flow

circumvent this issue but at the cost of introducing non-unitary behavior.

An even deeper problem, also highlighted in the works mentioned above, is that a quantum loop

can terminate on some inputs while diverging on others, leading to a superposition of terminating

and non-terminating states. Since quantum computation is performed by unitary operators trans-

forming quantum states (or superpositions) into quantum states, to determine from the outside

whether a quantum execution has reached a fixed point, one should either arbitrarily interrupt

the computation after a finite number of steps, thus making it terminate on all inputs, or let it

evolve indefinitely. If restricting our consideration to finite computations may seem a solution, it

is actually not a very satisfactory one, as it would prevent a suitable definition of a semantics for

formally reasoning about termination. ,

Therefore, just like for the calssical case, having a semantics that captures also infinite computa-

tion is crucial for correctly modeling quantum programs, although in the quantum case, achieving

this result is more problematic for the reasons discussed above. In this paper we show how a model

that characterizes which parts of the execution terminate and which do not in a quantum loop can

be defined by approximating the concrete unitary behaviour of a quantum program by some linear

operators which are able to ‘separate’ executions that have reached a fixed point from those that are

still computing even in the limit, i.e. in the case of an infinite loop. In fact, by relaxing the unitarity

constraint, we are able to construct an approximating sequence of linear operators which converges

to a mathematically well-defined limit. While for finite computations, this corresponds exactly to

the actual (unitary) behaviour of a quantum program, in the presence of infinite computations, it

is a linear operator with a norm strictly less than one due to the portion of the superposition on

which computation is still going on.

2 BACKGROUND
Programs in a quantum programming language are designed to run on quantum computers and

are very different from classical computer programs. The design and implementation of such

languages requires a sound knowledge of the principles of quantum mechanics and the underlying

mathematics. In this section, we briefly recall the main aspects of quantum computation that make

this computational model different from the classical one. We will refer to the circuit model of

computation and highlight such differences in terms of the meaning of wires and gates in a classical

and a quantum circuit.

In a quantum circuit, wires represent quantum bits, or qubits, rather than bits. The classical unit

of information (the bit) generates, with its two values 0 and 1, a complex vector space (a quantum

system), where each complex vector of norm 1 is the state of a qubit. This is, therefore, a linear

combination of the form |𝜓 ⟩ = 𝛼 |0⟩ + 𝛽 |1⟩, where 𝛼 and 𝛽 are complex numbers from which we

can infer the probability of the state resulting (after measurement) in 1 or 0, respectively. Such

probabilities are obtained as |𝛼 |2 and |𝛽 |2, which explains why quantum states must be normalized
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vectors, i.e. |𝛼 |2 + |𝛽 |2 = 1 must hold
1
. Such vectors live in a complex Hilbert space, equipped with

the ℓ2 norm 2
[6]. The state of 𝑛 qubits corresponds to a unit vector in the 2

𝑛
-dimensional Hilbert

space (H 2
𝑛

) obtained by composing by tensor product the normalized states corresponding to

each wire (qubit), i.e. a vector in a 2-dimensional complex Hilbert space (H 2
) [12, Chapter 2]. For

instance, the space of two qubits isH 4 = H 2 ⊗ H 2
and a generic state |𝜓 ⟩ inH 4

can be written as

|𝜓 ⟩ = 𝛼0 |00⟩ + 𝛼1 |01⟩ + 𝛼2 |10⟩ + 𝛼3 |11⟩, where all 𝛼𝑖 are complex numbers.

Throughout the paper, we will adopt the following convention. For a variable 𝑞, we will write

|𝜓 ⟩𝑞 to indicate that 𝑞 represents the state |𝜓 ⟩ of a qubit register. For multi qubits states, such as

for example
1/√2(|01⟩ + |10⟩, we will write 1/√2(|01⟩ + |10⟩)𝑝,𝑞 to indicate that variable 𝑝 represents

the first qubit and 𝑞 represents the second qubit of the entangled pair.

3 QUANTUMWHILE LANGUAGE
To present our semantics, we introduce a generic quantum language with a minimal set of constructs

consisting of quantum loop iteration, sequential composition, and unitary transformation. The

syntax of our simple language, which we will refer to as 𝑆𝐿, is given by the following grammar

defining a program 𝑠 as follows:

𝑠 F 𝑈 (𝑞)
�� 𝑠; 𝑠 �� skip �� while 𝑞 do {𝑠}, (1)

where 𝑞 is a quantum variable and 𝑞 denotes a sequence 𝑞1, . . . , 𝑞𝑛 of quantum variables. In 𝑆𝐿,

we do not define a command for state’s initialization (or assignment) since we assume that all

variables are initialized to |0 . . . 0⟩. All operations on variables are performed by statement 𝑈 (𝑞)
corresponding to applying a unitary transformation𝑈 to 𝑞. Every possible quantum transforma-

tion, except measurement, is a composition of unitary transformations. The principle of deferred

measurement [12, Chapter 4] guarantees that all intermediate measurements in a quantum circuit

can be moved to the end of the computation; thus, excluding measurement operation from our

languages does not cause a loss of generality. Moreover, as explaind in Section 1, this will make our

treatment independent of any specific interpretation of quantum mechanics. Since measurement

does not occur in 𝑆𝐿 programs, their semantics is a deterministic transition between quantum states

according to the physical law (the Shrödinger equation) governing the quantum system on which

the program is intended to be executed, without having to establish when quantum mechanics

should leave space to classical mechanics (which essentially constitutes the measurement problem

in quantum mechanics).

3.1 The State Space
To define the semantics of 𝑆𝐿, we consider a domain similar to the one described in [26, Chapter 3].

Given a program 𝑠 , let 𝑄𝑠 be the set of all variables occurring in 𝑠 . Each quantum variable 𝑞 ∈ 𝑄𝑠

has a type H𝑞 , and it is interpreted as a vector |𝜑⟩𝑞 in its own Hilbert space H𝑞 . For example, for a

Boolean variable 𝑏, the state |𝜑⟩𝑏 = 𝛼 |0⟩ + 𝛽 |1⟩, 𝛼, 𝛽 ∈ C corresponds to a vector in the complex

Hilbert space of dimension 2 (the state space of 1 qubit), which is the type of 𝑏. We define

H𝑄𝑠
=
⊗
𝑞∈𝑄𝑠

H𝑞, (2)

as the space of the types of all variables in 𝑄 . We consider an infinitely countable set 𝑇 = {𝑡𝑖 } of
ancillary quantum boolean variables, which are necessary to perform quantum while loops, and

1
The ket notation |𝜓 ⟩ is due to Dirac and represents the vector (𝛼, 𝛽 )𝑇 in linear algebraic notation.

2
The ℓ2 norm of a vector |𝜓 ⟩ = [𝛼1, 𝛼2, . . . , 𝛼𝑛 ]𝑇 is defined as ∥ |𝜓 ⟩ ∥ = Σ𝑛

𝑖=1

√︁
|𝛼𝑖 |2.
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𝑛

𝑡1
...

𝑞

𝑇

𝑄𝑠
𝑈

(a)

𝑡1

...

𝑇
𝑠1 𝑠2

𝑄𝑠

(b)

Fig. 1. The circuits corresponding to𝑈 (𝑞) (a) and 𝑠1; 𝑠2 (b).

their Hilbert space:

H𝑇 =
⊗
𝑡𝑖 ∈𝑇

H𝑡𝑖 where H𝑡𝑖 = H 2
(3)

Finally, we callH𝑃 = H𝑇 ⊗ H𝑄𝑠
the Hilbert space of the program 𝑠 .

4 UNITARY SEMANTICS
A quantum language with no classical operations can be completely described by using unitary

operators that can be visually represented by quantum circuits. A mathematical description of

these circuits is by means of linear algebra and, in particular, by the group of unitary operators on

a Hilbert space.

We start by defining the semantics for each statement in 𝑆𝐿 except the while statement.

Definition 4.1. Let U(H𝑃 ) be the group of unitary operators from H𝑃 to H𝑃 . The unitary

semantics is the function [ · ] : 𝑠 → U(H𝑃 ), defined by:

(1) [ skip ] = IH𝑃
;

(2) [𝑈 (𝑞) ] = 𝑈 , where𝑈 = I ⊗ 𝑈 ⊗ I, i.e. the extension of𝑈 on H𝑃 ;

(3) [ 𝑠1; 𝑠2 ] = [ 𝑠2 ] · [ 𝑠1 ].

Rule (2) corresponds to computing the operator𝑈 on 𝑞, and the identity on the other components

of the program space. Rule (3) models sequential composition by means of matrices multiplication

(the group operation). Since 𝑈 and I are unitary operators, the semantics of each statement is a

unitary operator. Therefore, every statement can be represented by a circuit as shown in Figure 1.

The case for the while is slightly more involved, and we treat it in the next section.

4.1 While Loop Semantics
A well-formed while statement should modify its guard within the loop body. To define a quantum

while instruction, we need a representation where the guard qubit can be updated while preserving

the unitarity of the evolution. Ideally, given a program 𝑝 = if𝑞 do {𝑈 (𝑞)} 3
, we would like to have a

unitary operator𝐶 such that𝐶 (𝛼 |0⟩𝑞 + 𝛽 |1⟩𝑞) = 𝛼 |0⟩𝑞 + 𝛽𝑈 |1⟩𝑞 . However, in quantum computing,

controlled operations cannot have their controller affected by the target, as this would break

unitarity. For example, consider 𝑝 = if𝑞 do {𝑋 (𝑞)}. The corresponding operator𝐶 would map |0⟩𝑞
to |0⟩𝑞 and |1⟩𝑞 to |0⟩𝑞 , which is clearly a non-injective, and thus non-unitary. We must introduce

an auxiliary qubit to model a self-controlled operation within a unitary framework on which to

copy information via a CNOT gate. Figure 2a illustrates a hypothetical quantum if-statement where

the guard is included in the body. The semantics can be represented by a unitary operator𝐶𝑈 such

that𝐶𝑈 ( |0⟩𝑡 ⊗ (𝛼 |0⟩𝑞 +𝛽 |1⟩𝑞)) = 𝛼 |0⟩𝑡 |0⟩𝑞 +𝛽 |1⟩𝑡 𝑈 |1⟩𝑞 . Extending this approach to a while loop
introduces an additional challenge: each iteration requires a fresh temporary qubit, which implies

the need for an infinite set of auxiliary qubits to model non-terminating loops. Figure 2b shows the

3
We use here the ‘if’ notation as a shortcut for indicating one iteration of the while statement
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|0⟩𝑡

|𝜓 ⟩𝑞 𝑈

(a)

|0⟩𝑡1
|0⟩𝑡2

...
|𝜓 ⟩𝑞 𝑈 𝑈 while

(b)

Fig. 2. Quantum circuits for if𝑞 do {𝑈 (𝑞)} (a) and while 𝑞 do {𝑈 (𝑞)} (b)

circuit representation of a quantum while loop, which is recursively defined and corresponds to an

infinite composition of unitary operations on an infinite-dimensional Hilbert space.

The first step in defining the semantics of a while loop is to start with the controlled operation.

In general, consider a Hilbert space H = H𝑔 ⊗ H𝑠 , where H𝑔 is a 2-dimensional Hilbert space

representing the control (guard) qubit, and H𝑠 is the space of target qubits. Given a unitary

operator𝑈𝑠 in H𝑠 , the unitary operator corresponding to𝑈𝑠 controlled by 𝑔 can be represented by

|0⟩⟨0|𝑔 ⊗ I𝑠 + |1⟩⟨1|𝑔 ⊗ 𝑈𝑠 , where I𝑠 is the identity in H𝑠 and |0⟩⟨0|𝑔 and |1⟩⟨1|𝑔 are the projector on
|0⟩𝑔 and |1⟩𝑔 respectively in H𝑔.

Proposition 4.2. Let P𝑖𝑔 = ( |𝑖⟩⟨𝑖 |𝑔 ⊗ I𝑠 ) be the projector |𝑖⟩⟨𝑖 |𝑔 extended to the wholeH , and let
𝑈 = (I𝑔 ⊗ 𝑈𝑠 ) be the extension of 𝑈𝑠 in H . The controlled operation |0⟩⟨0|𝑔 ⊗ I𝑠 + |1⟩⟨1|𝑔 ⊗ 𝑈𝑠 is
equivalent to the operator P0𝑔 + P1𝑔 ·𝑈 .

Proof. By the property 𝐴𝐶 ⊗ 𝐵𝐷 = (𝐴 ⊗ 𝐵) (𝐶 ⊗ 𝐷) [14, Lemma 4.2.10] we have |1⟩⟨1|𝑔 ⊗ 𝑈𝑠 =

( |1⟩⟨1|𝑔 ·I𝑔)⊗ (I𝑠 ·𝑈𝑠 ) = ( |1⟩⟨1|𝑔⊗I𝑠 ) (I𝑔⊗𝑈𝑠 ) = P1𝑔 ·𝑈 . Thus |0⟩⟨0|𝑔⊗I𝑠+|1⟩⟨1|𝑔⊗𝑈𝑠 = P0𝑔+P1𝑔 ·𝑈 . □

As shown in Figure 2b, to perform a quantum loop, we need to make a quantum ‘copy’ of the

guard variable in a new fresh ancillary variable for every iteration. This is realized by a CNOT gate,

which we will denote by G(𝑞, 𝑛) in our semantics, where 𝑞 is a variable in 𝑄𝑠 and 𝑛 ∈ N, 𝑛 ≥ 1

indicates the target 𝑡𝑛 ∈ 𝑇 .

Given a qubit 𝑞 ∈ 𝑄𝑠 , and a unitary operator 𝑆 that does not act on 𝑡1, we recursively define

an operator w𝑛 (𝑞, 𝑆), using the control operation in the format introduced in Proposition 4.2, as

follows:

w0 (𝑞, 𝑆) = I
w𝑛 (𝑞, 𝑆) = (P0𝑡

1

+ P1𝑡
1

· S(w𝑛−1 (𝑞, 𝑆)) · 𝑆)G(𝑞, 1). (4)

where S shifts the controls to keep the first ancilla qubit free. In particular, S(G(𝑞, 𝑛)) = G(𝑞, 𝑛+1)
and S(P𝑗𝑡𝑛 ) = P𝑗𝑡𝑛+1 . Let us look closer to w𝑖 (𝑞, 𝑆). The operator w𝑖 (𝑞, 𝑆) corresponds to the circuit

depicted in Figure 3a. Specifically, it includes the component G(𝑞, 1), which represents the first

controlled-not operation, and it incorporates the operator defined by (P0𝑡
1

+ P1𝑡
1

· S(w𝑛−1 (𝑞, 𝑆))𝑆).
This expression represents the operation 𝑆 followed by S(w𝑛−1 (𝑞, 𝑆)) controlled by 𝑡1. Here,

S(w𝑛−1 (𝑞, 𝑆))𝑆 denotes the composition of the unitary 𝑆 , which encodes the semantics of the

body of the while loop, and S(w𝑛−1 (𝑞, 𝑆)), which captures the semantics of the remaining part of

the while loop.

Proposition 4.3. The closed formula of Equation 4, is:

W𝑛 (𝑞, 𝑆) =
𝑛∑︁

ℎ=1

(
ℎ−1∏
𝑖=1

(P1𝑡𝑖 ) ·P0𝑡ℎ ·
𝑛−2∏

𝑖=𝑛−ℎ
(G(𝑞, 𝑛 − 𝑖) 𝑆) · G(𝑞, 1)) +

𝑛∏
𝑖=1

P1𝑡𝑖 ·
𝑛−1∏
𝑖=0

𝑆G(𝑞, 𝑛 − 𝑖). (5)
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𝑡1

𝑡2

...

𝑞

𝑇

S(w𝑖−1 (𝑞, 𝑆))

𝑄𝑠 𝑠

(a)

𝑡1

𝑡2

...
𝑡𝑘

𝑞

𝑇

· · ·

𝑠 𝑠 𝑠
𝑄𝑠

(b)

Fig. 3. Finite 𝑘-while loop

The proof is given in Appendix A.

Given a while 𝑞 do {𝑠} statement, we can build the chain of finite unitary approximation

{W(𝑞, [ 𝑠 ]}𝑛 . To define the semantics of the general construct, we must now consider the case

of an infinite loop. However, we can show that there is no limit to this sequence. From [23], we

recall the notion of strong convergence and an important theorem about the convergence of an

infinite sequence of operators.

Definition 4.4. Let 𝑇𝑛 and 𝑇 be linear operators from H𝑃 to itself. If ∥𝑇𝑛 |𝜓 ⟩ − 𝑇 |𝜓 ⟩ ∥ → 0 as

𝑛 → ∞, ∀ |𝜓 ⟩ ∈ H𝑃 , then the sequence of operators {𝑇𝑛} is strongly convergent to 𝑇 (denoted as

𝑇𝑛 → 𝑇 ).

Theorem 4.5. Let {𝑇𝑛}𝑛 be a sequence of bounded linear operators from 𝑋 → 𝑌 , where 𝑋 and 𝑌
are Banach spaces.𝑇𝑛 → 𝑇 if and only if the sequence {∥𝑇𝑛 ∥}𝑛 is bounded and the sequence {𝑇𝑛𝑥}𝑛 is
a Cauchy sequence in 𝑌 for all 𝑥 ∈ 𝑀 ⊂ 𝑋 , where the span of𝑀 is dense in 𝑋 .

We recall that a sequence {𝑥𝑛}𝑛 in a Hilbert space is said to be a Cauchy sequence if, for any

positive real number 𝜖 > 0, there exists a positive integer 𝑁 such that for all positive integers𝑚

and 𝑛 greater than 𝑁 , the distance ∥𝑥𝑚 − 𝑥𝑛 ∥ < 𝜖 .

As an example, consider the quantumprogram while𝑞 do {skip}, evaluated on |𝜓 ⟩𝑃 = |0 . . .⟩𝑇 |1⟩𝑞 .
This loop corresponds to the following chain:

W0 (𝑞,𝑋𝑞) |0 . . .⟩𝑇 |1⟩𝑞 = |0 . . .⟩𝑇 |1⟩𝑞 ,
W1 (𝑞,𝑋𝑞) |0 . . .⟩𝑇 |1⟩𝑞 = |10 . . .⟩𝑇 |1⟩𝑞 ,
W𝑛 (𝑞,𝑋𝑞) |0 . . .⟩𝑇 |1⟩𝑞 =

��
1
⊗𝑛
0 . . .

〉
𝑇
|1⟩𝑞 .

(6)

We see that for all 𝑛, ∥W𝑛+1 (𝑞,𝑋𝑞) |𝜓 ⟩𝑃 − W𝑛 (𝑞,𝑋𝑞) |𝜓 ⟩𝑃 ∥ = 2. More in general, if

|𝜓 ⟩𝑃 = |0 . . .⟩𝑇 (𝛼 |0⟩ + 𝛽 |1⟩)𝑞,
we have

W𝑛 (𝑞,𝑋𝑞) |𝜓 ⟩𝑃 = 𝛼 |0 . . .⟩𝑇 |0⟩𝑞 + 𝛽
��
1
⊗𝑛
0 . . .

〉
𝑇
|1⟩𝑞 ,

and for all 𝑛, ∥W𝑛+1 (𝑞,𝑋𝑞) |𝜓 ⟩𝑃 − W𝑛 (𝑞,𝑋𝑞) |𝜓 ⟩𝑃 ∥ = 2𝛽2. Since for infinite vectors the distance

between the element of {W𝑛 (𝑞,𝑋𝑞) |𝜓 ⟩𝑃 }𝑛 is constant, the sequence {W𝑛 (𝑞,𝑋𝑞) |𝜓 ⟩𝑃 }𝑛 is not Cauchy,
and for Theorem 4.5 the sequence {W𝑛 (𝑞,𝑋𝑞)}𝑛 is not strongly convergent. The unitary semantics

is therefore only able to model a while statement limited to a certain finite number of iterations 𝑘 ,

which we will denote by while𝑘 𝑞 do {𝑠}. The semantics for this statement is defined as follows:

[ while𝑘 𝑞 do {𝑠} ] = W𝑘 (𝑞, [ 𝑠 ]).
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This unitary operator can be represented by the circuit in Figure 3b.

4.2 Examples
We show how the operator W𝑛 works by means of some examples.

First we consider while𝑘 𝑞 do {𝑋 (𝑞)} with the state |𝜓 ⟩ = 1/√2 |0 . . .⟩𝑇 (|0⟩𝑞 + |1⟩𝑞)) as input:

W0 (𝑞,𝑋𝑞) |𝜓 ⟩ = 1/√2 |0 . . .⟩𝑇 (|0⟩𝑞 + |1⟩𝑞)
W1 (𝑞,𝑋𝑞) |𝜓 ⟩ = 1/√2( |0 . . .⟩𝑇 |0⟩𝑞 + |10 . . .⟩𝑇 |0⟩𝑞)
W2 (𝑞,𝑋𝑞) |𝜓 ⟩ = 1/√2( |0 . . .⟩𝑇 |0⟩𝑞 + |10 . . .⟩𝑇 |0⟩𝑞)

. . .

(7)

Note that with this input, the while loop fully terminates, and in fact, W𝑛 (𝑞,𝑋𝑞) reaches a fixpoint.
Things are different when non-termination is involved, as in the loop while 𝑞 do {𝐻 (𝑞)} with

the same input |𝜓 ⟩:
W0 (𝑞, 𝐻𝑞) |𝜓 ⟩ = 1/√2 |0 . . .⟩𝑇 (|0⟩𝑞 + |1⟩𝑞)
W1 (𝑞, 𝐻𝑞) |𝜓 ⟩ = 1/√2 |0 . . .⟩𝑇 |0⟩𝑞 + 1/2( |10 . . .⟩𝑇 |0⟩𝑞 − |10 . . .⟩𝑇 |1⟩𝑞)
W2 (𝑞, 𝐻𝑞) |𝜓 ⟩ = 1/√2 |0 . . .⟩𝑇 |0⟩𝑞 + 1/2 |10 . . .⟩𝑇 |0⟩𝑞

+ 1/√8( |110 . . .⟩𝑇 |0⟩𝑞 − |110 . . .⟩𝑇 |1⟩𝑞)
W3 (𝑞, 𝐻𝑞) |𝜓 ⟩ = 1/√2 |0 . . .⟩𝑇 |0⟩𝑞 + 1/2 |10 . . .⟩𝑇 |0⟩𝑞

+ 1/√8 |110 . . .⟩𝑇 |0⟩𝑞 + 1/4( |1110 . . .⟩𝑇 |0⟩𝑞 − |1110 . . .⟩𝑇 |1⟩𝑞)
W𝑛 (𝑞, 𝐻𝑞) |𝜓 ⟩ = Σ𝑛𝑖=0

1/√2𝑖+1
��
1
⊗𝑖
0 . . .

〉
𝑇
|0⟩𝑞 − 1/√2𝑛+1

��
1
⊗𝑛
0 . . .

〉
𝑇
|1⟩𝑞 .

(8)

Since each 𝑡 𝑗 controls the execution of the 𝑗-th iteration, 𝑡 𝑗 = 1 indicates that the 𝑗-th iteration

has been executed (see Figure 3b and Figure 2b). During each iteration of w𝑛 , the terminating part

of the state—where 𝑞 equals |0⟩—is gradually increased. In contrast, the portion corresponding to

non-termination, where 𝑞 equals |1⟩, decreases but never fully reaches zero.

Finally, consider again the while loop while 𝑞 do {skip}, evaluated on |0 . . .⟩𝑇 |1⟩𝑞 in Equation 6.

Here for a divergent loop, each w𝑛 differs from the previous ones, reflecting that the unitary

semantics corresponds to the partial results of the divergent loop computation.

5 LINEAR SEMANTICS
Tomodel infinite computation in quantum computing, we need to enlarge the domain of denotations

so as to include an appropriate limit. To this purpose, we observe that a unitary operator is also

bounded and, therefore, can be seen as an element of the Banach Space of linear bounded operators

on H𝑃 .

We start by defining the linear semantics for each statement in 𝑆𝐿, except the while statement.

Definition 5.1. LetB(H𝑃 ) be the space of linear bounded operators fromH𝑃 toH𝑃 equipped with

the operator norm ∥𝐴∥ = sup∥ |𝜓 ⟩ ∥=1 ∥𝐴 |𝜓 ⟩ ∥. The linear semantics is a function ⟦ · ⟧ : 𝑠 → B(H𝑃 ),
defined by:

(1) ⟦ skip ⟧ = IH𝑃
;

(2) ⟦𝑈 (𝑞) ⟧ = 𝑈 , where𝑈 = I ⊗ 𝑈 ⊗ I, i.e. the extension of𝑈 on H𝑃 ;

(3) ⟦ 𝑠1; 𝑠2 ⟧ = ⟦ 𝑠2 ⟧ · ⟦ 𝑠1 ⟧;

Note that the linear semantics of these statements is exactly the same as the unitary semantics

defined in Definition 4.1. For the while statement, we need instead to introduce a new bounded

linear operator, which will allow us to give a meaning also to infinite computations.



8 Nicola Assolini and Alessandra Di Pierro

Let 𝑆 be a bounded linear operator and 𝑞 ∈ 𝑄𝑠 . We define the operator l𝑛 (𝑞, 𝑆) by:
l0 (𝑞, 𝑆) = 0

l𝑛 (𝑞, 𝑆) = (P0𝑡
1

+ P1𝑡
1

· S(l𝑛−1 (𝑞, 𝑆)) · 𝑆)G(𝑞, 1), (9)

where 0 is the zero operator in H𝑃 , S produces the shift 𝑡𝑛 → 𝑡𝑛+1, and the controlled operation is

represented by the operator defined in Proposition 4.2.

It is easy to see that for 𝑛 > 0, the operator l𝑛 (𝑞, 𝑆) is equivalent to the operator w𝑛 (𝑞, 𝑆) as
defined in Equation 4; in fact, l𝑛 (𝑞, 𝑆) is defined as the composition of the controlled-not gate,

which evaluates the guard, and the operator corresponding to the composition of the semantics of

the loop body 𝑆 and l𝑛−1 (𝑞, 𝑆) shifted by S.
Proposition 5.2. For all 𝑛, if 𝑆 is bounded then l𝑛 (𝑞, 𝑆) is bounded.
Proof. Let’s consider l𝑛 (𝑞, 𝑆) and a vector |𝜓 ⟩ such that ∥𝜓 ∥ = 1:

∥(P0𝑡
1

+ P1𝑡
1

· S(l𝑖−1 (𝑞, 𝑆)) · 𝑆)G(𝑞, 1) |𝜓 ⟩ ∥2 =
(since G(𝑞, 1) is unitary)

= ∥(P0𝑡
1

+ P1𝑡
1

· S(l𝑖−1 (𝑞, 𝑆)) · 𝑆) |𝜓 ⟩ ∥2 =
= ∥P0𝑡

1

|𝜓 ⟩ + P1𝑡
1

· S(l𝑖−1 (𝑞, 𝑆)) · 𝑆 |𝜓 ⟩ ∥2 =
(P0𝑡

1

|𝜓 ⟩ and P1𝑡
1

S(l𝑖−1 (𝑞, 𝑆))𝑆 |𝜓 ⟩ are orthogonal [6])
= ∥P0𝑡

1

|𝜓 ⟩ ∥2 + ∥P1𝑡
1

S(l𝑖−1 (𝑞, 𝑆))𝑆) |𝜓 ⟩ ∥2 ≤
(S(l𝑖−1 (𝑞, 𝑆))𝑆) is bounded)

≤ ∥P0𝑡
1

|𝜓 ⟩ ∥2 + ∥P1𝑡
1

|𝜓 ⟩ ∥2 =
= ∥(P0𝑡

1

+ P1𝑡
1

) |𝜓 ⟩ ∥2 = ∥ |𝜓 ⟩ ∥2 = 1.

Since ∥l𝑛 (𝑞, 𝑆) |𝜓 ⟩ ∥2 ≤ 1 also ∥l𝑛 (𝑞, 𝑆) |𝜓 ⟩ ∥ ≤ 1. □

Proposition 5.3. The closed formula of Equation 9 is:

L𝑛 (𝑞, 𝑆) =
𝑛∑︁

𝑘=1

(
𝑘−1∏
𝑖=1

(P1𝑡𝑖 ) · P0𝑡𝑘 ·
𝑛−2∏

𝑖=𝑛−𝑘
(G(𝑞, 𝑛 − 𝑖) · 𝑆) · G(𝑞, 1)) . (10)

A proof by induction is given in Appendix A.

Now, given the while 𝑞 do {𝑠} statement, we can define a chain of linear operator {L𝑛 (𝑞, ⟦ 𝑠 ⟧)}𝑛
that represent the linear semantics of all finite executions of the while loop.

Proposition 5.4. For all 𝑛, L𝑛 (𝑞, ⟦ 𝑠 ⟧) is bounded.
Proof. The proof follows by means of a structural induction on 𝑠 and Proposition 5.2 □

To define the semantics of the whole construct, we now must include the case of an infinite loop,

which, as we will show later, is captured by the limit of the sequence {L𝑛 (𝑞, ⟦ 𝑠 ⟧)}𝑛 .
From Theorem 4.5, we know that if we prove that the sequence {∥L𝑛 (𝑞, ⟦ 𝑠 ⟧)∥} is bounded and

that, for all |𝜓 ⟩ ∈ H𝑃 , the sequence {L𝑛 (𝑞, ⟦ 𝑠 ⟧) |𝜓 ⟩} is a Cauchy sequence in H𝑃 , then we can

conclude that the sequence {L𝑛 (𝑞, ⟦ 𝑠 ⟧)}𝑛 has a limit. So, let’s first prove that {∥L𝑛 (𝑞, ⟦ 𝑠 ⟧)∥}𝑛 is

bounded.

Proposition 5.5. The sequence {∥L𝑛 (𝑞, ⟦ 𝑠 ⟧)∥} is bounded.
Proof. From Proposition 5.4, we know that for all 𝑛, ∥L𝑛 (𝑞, ⟦ 𝑠 ⟧)∥ ≤ 1, thus the sequence

{∥L𝑛 (𝑞, ⟦ 𝑠 ⟧)∥} is bounded above [9]. □
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We will now show that, for all |𝜓 ⟩ ∈ H𝑃 , the sequence {L𝑛 (𝑞, ⟦ 𝑠 ⟧) |𝜓 ⟩} is Cauchy. To this

purpose, we state some support lemmas.

Lemma 5.6. For all 𝑛 > 0, L𝑛 (𝑞, ⟦ 𝑠 ⟧) =
∑𝑛

𝑖=1 (L𝑖 (𝑞, ⟦ 𝑠 ⟧) − L𝑖−1 (𝑞, ⟦ 𝑠 ⟧)).

Proof. In general, given a sequence 𝐴𝑛 , by induction on 𝑛 and by straightforward arithmetic

simplifications, we can prove that 𝐴𝑛 =
∑𝑛

𝑖=1 (𝐴𝑖 − 𝐴𝑖−1) + 𝐴0. In our case, L0 (𝑞, ⟦ 𝑠 ⟧) = 0, thus

L𝑛 (𝑞, ⟦ 𝑠 ⟧) =
∑𝑛

𝑖=1 (L𝑖 (𝑞, ⟦ 𝑠 ⟧) − L𝑖−1 (𝑞, ⟦ 𝑠 ⟧)). □

Lemma 5.7. For every 𝑛 ≠ 𝑚, L𝑛 (𝑞, ⟦ 𝑠 ⟧) − L𝑛−1 (𝑞, ⟦ 𝑠 ⟧) and L𝑚 (𝑞, ⟦ 𝑠 ⟧) − L𝑚−1 (𝑞, ⟦ 𝑠 ⟧) are
orthogonal.

Proof. From Equation 10, we can compute:

L𝑛 (𝑞, ⟦ 𝑠 ⟧) − L𝑛−1 (𝑞, ⟦ 𝑠 ⟧) =
𝑛−1∏
𝑖=1

(
P1𝑡𝑖

)
· P0𝑡𝑛 ·

𝑛−2∏
𝑖=0

(G(𝑞, 𝑛 − 𝑖) · 𝑆) · G(𝑞, 1),

L𝑚 (𝑞, ⟦ 𝑠 ⟧) − L𝑚−1 (𝑞, ⟦ 𝑠 ⟧) =
𝑚−1∏
𝑖=1

(
P1𝑡𝑖

)
· P0𝑡𝑚 ·

𝑚−2∏
𝑖=0

(G(𝑞, 𝑛 − 𝑖) · 𝑆) · G(𝑞, 1).

Clearly, if 𝑛 ≠ 𝑚,

∏𝑛−1
𝑖=1

(
P1𝑡𝑖

)
P0𝑡𝑛 and

∏𝑚−1
𝑖=1

(
P1𝑡𝑖

)
P0𝑡𝑚 are orthogonal, and thus L𝑛 (𝑞, ⟦ 𝑠 ⟧) −

L𝑛−1 (𝑞, ⟦ 𝑠 ⟧) and L𝑚 (𝑞, ⟦ 𝑠 ⟧) − L𝑚−1 (𝑞, ⟦ 𝑠 ⟧) are orthogonal. □

Lemma 5.8. For every 𝑛,𝑚, if 𝑛 ≤ 𝑚, then ∥L𝑛 (𝑞, ⟦ 𝑠 ⟧) |𝜓 ⟩ ∥ ≤ ∥L𝑚 (𝑞, ⟦ 𝑠 ⟧) |𝜓 ⟩ ∥.

Proof. From Equation 10, we observe that if𝑛 ≤ 𝑚, the summation corresponding to L𝑚 (𝑞, ⟦ 𝑠 ⟧)
contains all the terms of L𝑛 (𝑞, ⟦ 𝑠 ⟧) plus additional terms. Recall that each term in the summation

consists of projectors that are mutually orthogonal, and the sum of all projectors is different from

the identity. Thus, if L𝑛 (𝑞, ⟦ 𝑠 ⟧) |𝜓 ⟩ =
∑
𝛼𝑖 |𝑒𝑖⟩ and L𝑚 (𝑞, ⟦ 𝑠 ⟧) |𝜓 ⟩ =

∑
𝛽𝑖 |𝑒𝑖⟩, where |𝑒𝑖⟩ is a

standard basis of H𝑃 , then ∀𝑖, 𝛼𝑖 ≠ 0 ⇒ 𝛽𝑖 = 𝛼𝑖 . In other words, L𝑛 (𝑞, ⟦ 𝑠 ⟧) |𝜓 ⟩ is a substate of
L𝑚 (𝑞, ⟦ 𝑠 ⟧) |𝜓 ⟩ since L𝑚 (𝑞, ⟦ 𝑠 ⟧) projects the state on ‘more basis vectors’ that L𝑛 (𝑞, ⟦ 𝑠 ⟧). □

Theorem 5.9. For all vectors |𝜓 ⟩ ∈ H𝑃 , the sequence {L𝑛 (𝑞, ⟦ 𝑠 ⟧) |𝜓 ⟩}𝑛 is Cauchy.

Proof. By Lemma 5.6, L𝑛 (𝑞, ⟦ 𝑠 ⟧) |𝜓 ⟩ = Σ𝑛𝑖=1 (L𝑖 (𝑞, ⟦ 𝑠 ⟧) − L𝑖−1 (𝑞, ⟦ 𝑠 ⟧)) |𝜓 ⟩. By Lemma 5.7 and

[6, Exercise 2] it holds that:

∥L𝑛 (𝑞, ⟦ 𝑠 ⟧) |𝜓 ⟩ ∥2 = Σ𝑛𝑖=1∥(L𝑖 (𝑞, ⟦ 𝑠 ⟧) − L𝑖−1 (𝑞, ⟦ 𝑠 ⟧)) |𝜓 ⟩ ∥2 .
Let us consider the sequence of partial sums {Σ𝑛𝑗=1∥(L𝑖 (𝑞, ⟦ 𝑠 ⟧) − L𝑖−1 (𝑞, ⟦ 𝑠 ⟧)) |𝜓 ⟩ ∥2}𝑛 . By Propo-

sition 5.4 and Lemma 5.8, we know that all partial sums are bounded and that the sequence of

partial sums is increasing. Since the sequence of partial sums is both increasing and bounded above,

it must converge [9]. This implies that the infinite sum Σ∞
𝑗=1∥(L𝑖 (𝑞, ⟦ 𝑠 ⟧) − L𝑖−1 (𝑞, ⟦ 𝑠 ⟧)) |𝜓 ⟩ ∥2

also converges [20]. We have that Σ∞
𝑖=1∥(L𝑖 (𝑞, ⟦ 𝑠 ⟧) − L𝑖−1 (𝑞, ⟦ 𝑠 ⟧)) |𝜓 ⟩ ∥2 converges, and for all

𝑖 , ∥(L𝑖 (𝑞, ⟦ 𝑠 ⟧) − L𝑖−1 (𝑞, ⟦ 𝑠 ⟧)) |𝜓 ⟩ ∥2 > 0. Thus, lim𝑖→∞
(
∥(L𝑖 (𝑞, ⟦ 𝑠 ⟧) − L𝑖−1 (𝑞, ⟦ 𝑠 ⟧)) |𝜓 ⟩ ∥2

)
= 0,

which implies that lim𝑖→∞ (∥L𝑖 (𝑞, ⟦ 𝑠 ⟧) |𝜓 ⟩ − L𝑖−1 (𝑞, ⟦ 𝑠 ⟧) |𝜓 ⟩ ∥) = 0. This ensures that the se-

quence {L𝑖 (𝑞, ⟦ 𝑠 ⟧) |𝜓 ⟩}𝑖 is a Cauchy sequence in H𝑃 . □

Having shown that, for all |𝜓 ⟩ ∈ H𝑃 , {L𝑛 (𝑞, ⟦ 𝑠 ⟧ |𝜓 ⟩}𝑛 is a Cauchy sequence, by Theorem 4.5

we can conclude that the sequence {L𝑛 (𝑞, ⟦ 𝑠 ⟧)} has a limit. Thus, we use that limit to define the

semantics of the quantum loop:

⟦ while 𝑞 do {𝑠} ⟧ = lim

𝑛→∞
L𝑛 (𝑞, ⟦ 𝑠 ⟧) .
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Moreover, the following proposition shows that this limit corresponds to a well-defined linear

operator on H𝑃 .

Proposition 5.10. Let {|𝑒𝑖⟩}𝑖 be the set of standard basis ofH𝑃 , and let L(𝑞, ⟦ 𝑠 ⟧) be the linear
operator defined as L(𝑞, ⟦ 𝑠 ⟧) |𝑒𝑖⟩ = lim𝑛→∞ L𝑛 (𝑞, ⟦ 𝑠 ⟧) |𝑒𝑖⟩, ∀ |𝑒𝑖⟩. Then

L(𝑞, ⟦ 𝑠 ⟧) = lim

𝑛→∞
{L𝑛 (𝑞, ⟦ 𝑠 ⟧)}𝑛

.

Proof. By definition, for all basis |𝑒𝑖⟩ of H𝑃 , L(𝑞, ⟦ 𝑠 ⟧) |𝑒𝑖⟩ = lim𝑛→∞ L𝑛 (𝑞, ⟦ 𝑠 ⟧) |𝑒𝑖⟩, thus
∥L𝑛 (𝑞, ⟦ 𝑠 ⟧) |𝑒𝑖⟩ − L(𝑞, ⟦ 𝑠 ⟧) |𝑒𝑖⟩ ∥ → 0 as 𝑛 → ∞. Therefore, for all |𝜓 ⟩ ∈ H𝑃 , ∥L𝑛 (𝑞, ⟦ 𝑠 ⟧) |𝜓 ⟩ −
L(𝑞, ⟦ 𝑠 ⟧) |𝜓 ⟩ ∥ → 0 as 𝑛 → ∞. □

6 RELATION BETWEEN UNITARY AND LINEAR SEMANTICS
So far, we have introduced two semantics:

- The unitary semantics models exactly the behavior of quantum computation, and

- the linear semantics allows us to define a fixpoint and define the semantics of the infinite

loops.

In this section, we investigate the relationship between these two semantics.

Let us consider the examples introduced in subsection 4.2. We can construct the semantics of the

program while 𝑞 do {𝑋 (𝑞)}, starting from the state |𝜓 ⟩ = 1/√2 |0 . . .⟩𝑇 ( |0⟩𝑞 + |1⟩𝑞), as follows:

L0 (𝑞,𝑋𝑞) |𝜓 ⟩ = 0

L1 (𝑞,𝑋𝑞) |𝜓 ⟩ = 1/√2 |0 . . .⟩𝑇 |0⟩𝑞
L2 (𝑞,𝑋𝑞) |𝜓 ⟩ = 1/√2( |0 . . .⟩𝑇 |0⟩𝑞 + |10 . . .⟩𝑇 |0⟩𝑞)
L3 (𝑞,𝑋𝑞) |𝜓 ⟩ = 1/√2( |0 . . .⟩𝑇 |0⟩𝑞 + |10 . . .⟩𝑇 |0⟩𝑞)

(11)

We see that we have ’collected’ the sub-state that corresponds to the terminating execution, and

since the program is fully terminating, the fixpoint is a state with a norm equal to 1. Comparing

the examples in the previous sections (Equation 7), it is easy to see that when the loop terminates,

the two semantics coincide, specifically L𝑛+1 = W𝑛 . In this case, the linear semantics is ‘behind’ the

unitary semantics because the latter also includes the component that corresponds to executions

that ‘keep going.’

Now consider the program while 𝑞 do {𝐻 (𝑞)} and the construction of its semantics:

L0 (𝑞, 𝐻𝑞) |𝜓 ⟩ = 0

L1 (𝑞, 𝐻𝑞) |𝜓 ⟩ = 1/√2 |0 . . .⟩𝑇 |0⟩𝑞
L2 (𝑞, 𝐻𝑞) |𝜓 ⟩ = 1/√2 |0 . . .⟩𝑇 |0⟩𝑞 + 1/2 |10 . . .⟩𝑇 |0⟩𝑞
L3 (𝑞, 𝐻𝑞) |𝜓 ⟩ = 1/√2 |0 . . .⟩𝑇 |0⟩𝑞 + 1/2 |10 . . .⟩𝑇 |0⟩𝑞 + 1/√8 |110 . . .⟩𝑇 |0⟩𝑞)

L𝑛 (𝑞, 𝐻𝑞) |𝜓 ⟩ =
𝑛∑︁
𝑖=1

1/√2𝑛
��
1
⊗𝑖
0 . . .

〉
𝑇
|0⟩𝑞 .

(12)

Here, we see that in each approximation L𝑛 , we obtain a state with a norm less than 1, which

corresponds to the part of the execution that terminates in at most 𝑛 − 1 iterations. If we compare

the linear semantics in Equation 12 with the corresponding unitary semantics in Equation 8, we

observe that the linear semantics has a ‘missing’ part in the output states—specifically, the portion

of the state representing the execution that ‘keeps going’.
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Finally, consider the while loop while 𝑞 do {𝑠𝑘𝑖𝑝}, evaluated on |0 . . .⟩𝑇 |1⟩𝑞 :
L0 (𝑞, I) |0 . . .⟩𝑇 |1⟩𝑞 = 0

L1 (𝑞, I) |0 . . .⟩𝑇 |1⟩𝑞 = P0𝑡
1

|10 . . .⟩𝑇 |1⟩𝑞 = 0

L2 (𝑞, I) |0 . . .⟩𝑇 |1⟩𝑞 = P0𝑡
1

|10 . . .⟩𝑇 |1⟩𝑞 + P1𝑡
1

P0𝑡
2

|110 . . .⟩𝑇 |1⟩𝑞 = 0.

(13)

When dealing with a loop that diverges for the whole quantum state, the linear semantics in

Equation 13 evaluates to 0. On the other hand, the unitary semantics (Equation 6) computes all

partial executions of the divergent loop.

More generally, in all examples, the unitary operator W𝑛 returns the portion of the state corre-

sponding to executions that terminate after less than 𝑛 iterations, along with the partial results of

computations that are still ongoing. In contrast, the linear semantics can separate the terminating

portion of the computation. In fact, by examining the definition of W𝑛 (Equation 5), we can identify

two key components:

P0𝑡ℎ ·
𝑛−2∏

𝑖=𝑛−ℎ

(
G(𝑞, 𝑛 − 𝑖)𝑆

)
· G(𝑞, 1),

which is also present in the linear semantics (Equation 10), and the final term is given by:

𝑛∏
𝑖=1

P1𝑡𝑖 ·
𝑛−1∏
𝑖=0

𝑆G(𝑞, 𝑛 − 𝑖).

The first part corresponds to computations where the guard becomes 0 after the (𝑛−1)-th execution,
indicating the terminating of the. The second part represents the non-terminating portion, where

the guard remains true, meaning that the loop is still in progress. The linear semantics, therefore,

returns a sub-state of the result of the unitary semantics. For this reason, we can consider the linear

semantics as an under-approximation of the unitary semantics. By discarding part of the result, the

linear semantics allows the definition of a limit and, therefore, gives meaning to infinite behaviors.

7 CONCLUSION AND RELATEDWORK
We have introduced a denotational semantics for quantum programs, which approximates the

unitary behaviour of the programs by means of linear operators acting on possibly non-normalized

states, which contain both finite and infinite results.

Various approaches to the problem of modeling the control flow in a quantum progragram have

been introduced in the literature on the design and implementation of quantum programming

languages. They can be grouped as follows.

Probabilistic control flow. The initial works on quantum program semantics focused on lan-

guages with quantum data and classical probabilistic control, primarily based on measurement

operators. In [16], Selinger introduced the basic notations, theories, and conventions for a quan-

tum programming language with measurement-based probabilistic control flow, called QPL. He

provided a denotational semantics for QPL by associating each program with a superoperator (a

completely positive map that is not necessarily trace-preserving) in a finite-dimensional Hilbert

space, represented as a morphism in a CPO-enriched traced monoidal category.

In [13], Perdrix extended this work by introducing a complete partial order (CPO) over admissible

transformations, i.e., multisets of linear operators, and using it to define a denotational semantics

for a simple quantum imperative language similar to QPL. He demonstrated that this semantics is

an exact abstraction of Selinger’s semantics.

In a series of works [5, 24, 27, 28], Ying et al. explored a quantumwhile languagewithmeasurement-

based probabilistic control flow. They defined a denotational semantics in terms of maps between
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density operators, generalizing Selinger’s results to infinite-dimensional Hilbert spaces. In these

works, the denotational semantics is constructed using the CPO of superoperators acting on partial

density operators. Finally, in [26, Chapter 3], Ying further developed this domain to define the

semantics of a quantum language with recursion and measurement-based probabilistic control flow,

providing a more comprehensive framework for reasoning about quantum programs.

Quantum Control. All the previous works focused on language with probabilistic control flow,

thus their semantics is probabilistic and no superposition is introduced between possible executions

of the programs.

A first form of quantum control was introduced in Altenkirch and Grattage’s functional language

QML [1], a first-order functional language on finite types equipped with a categorical semantics

capturing only finite quantum computations. In [7], Lampis et al. introduced nQML, a simplified

version of QML with simpler control constructs and a denotational semantics based on density

matrices and unitary transformations, still capturing only finite computations.

A formal definition of quantum imperative language with quantum control flow was introduced

by Ying et al. in [28, 29], where they define the QuGCL language, i.e. a language with both

quantum control flow and measurement-based control flow but no recursion. A semantics for this

language is given in terms of a new mathematical tool called the guarded composition of operator-

valued functions, where operator-valued functions are defined using the Kraus operator-sum

representation [12, Chapter 8]. However, this semantics is not compositional.

More recently, in [22], Valiron has reviewed the use of quantum control in the 𝜆-calculus,

explaining the difference between superposition of terms and superposition of data in the various

formulations.

In [30], Yuan et al. studied the problem of automatically compiling self-controlled quantum

operations minimizing the use of extra temporary variables and avoiding that these extra temporary

variables are entangled with the rest of the variables. In particular, they formalize the conditions

under which this compilation is possible. Their compilation technique can be seen as a particular

case of our unitary semantics. Inspired by Yuan et al., Zhang and Ying [31] propose a quantum

architecture that supports quantum control flow and finite quantum recursion.

Quantum recursion. Introducing a construct for quantum control flow in a programming language

naturally leads to the concepts of quantum recursion or quantum loops. An initial idea of quantum

recursion, based on using an infinite set of external coins, was informally discussed in [28].

The issue of quantum recursion was formally addressed for the first time by Badescu and

Panangaden in [3]. They extended the QPL programming language [16] by introducing a quantum

if-statement and provided a denotational semantics for this extension based on Kraus decomposition.

However, they observed that the semantics of quantum case statements is not monotone with

respect to Selinger’s order, concluding that the existing framework is inadequate for modeling

quantum recursion. In our paper, we generalise this observation by demonstrating that even in a

setting without measurement, it is impossible to define a limit for the sequence of unitary operators.

This highlights the inherent challenges in modeling quantum recursion within a purely unitary

framework.

In [15], Sabry et al. extend a classical, typed, reversible language that includes lists and fixpoints

to a quantum setting. The resulting quantum language is provided with an operational semantics

following the algebraic 𝜆-calculi principles. This work proves that it is possible to represent with a

unitary operator a quantum program with recursion, only if we are able to construct the fixpoint

of the recursive call by means of a finite unfolding the recursive calls. As we do not impose any

restriction on the quantum loop, our semantics is more general.
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|𝜓 ⟩𝑞0
|𝜓 ⟩𝑞1 𝑈

|𝜓 ⟩𝑞2 𝑈 𝑈

P P P

Fig. 4. P := if𝑞 do {𝑈 (𝑞);P} circuit

In his PhD thesis [2], Andrés-Martínez introduces a quantum while language similar to ours

but equipped with a categorical semantics. The thesis extends Haghverdi’s unique decomposi-

tion categories—originally introduced to model iteration in classical computation—by addressing

their incompatibility with the quantum settings. This generalisation establishes connections to

topological groups and leads to a hierarchy of categories enriched with infinitary addition and

convergence criteria. Building on this foundation, the execution formula is shown to define a valid

categorical trace even over categories of quantum processes on infinite-dimensional Hilbert spaces.

This approach, however, relies on a computational model which is not immediately referable to

quantum circuits. In defining our semantics, we, instead, refer to the standard computation model

of quantum computing; in fact, our unitary semantics is directly implementable on a quantum

computer.

In [25, 26], Ying explores a problem similar to ours, considering a recursive quantum language.

This work has a stronger similarity with our approach than the other works mentioned above,

although the implementation of the self-controlled operation is in a sense ‘dual’ with respect to our

model. In fact, instead of making a quantum copy of the guard using a CNOT gate, Ying proposes

to prepare and carry along the program an infinite number of copies of identical qubits to represent

the guard. However, since we are trying to represent in a unitary way an operation that inherently

cannot be unitary, this difference is merely a design choice to address the unitarity constraint.

In this setting, recursion is achieved with programs of the form P := if𝑞 do {𝑈 (𝑞);P}, which
can be visually represented in Figure 4. It can be seen that each recursive call consumes a copy of

the guard variable, and to achieve infinite recursion, we need an infinite number of copies of the

same guard variables. For defining their semantics, Ying et al. employ a formalism from quantum

physics related to multi-particle systems, specifically Fock spaces [17] and second quantization [4].

In particular, they consider free Fock spaces, i.e., Hilbert spaces that describe quantum states with a

variable number of indistinguishable particles, constructed as ⊕∞
𝑛=1H⊗𝑛

, i.e., the direct sum of tensor

powers of the single-particle Hilbert space H . Using this formulation, Ying defines a Complete

Partial Order (CPO), which orders the operators within the Fock space based on the number of guard

copies that these operators act on. As a result, the semantics of a recursive program demonstrates a

monotonically continuous order, which, in turn, allows for the existence of a fixed point.

Both ours and Ying’s semantics share the key feature of utilising an infinite number of qubits

to perform while loops and defining recursive unitary operators, as illustrated in Figure 2b and

Figure 4. In fact, we can choose to formulate our approach within Ying’s Fock space semantics or,

conversely, describe Ying’s semantics using our Unitary/Linear framework. In the latter case, we

can specifically adopt the formulation introduced by Ying in [25, Section 6.4], mapping the Fock

space operator to a unitary operator on the program variables space as in Figure 4, and subsequently

to a linear operator, in the same way as in section 5.
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A OMITTED PROOFS
Proposition 4.3. The closed formula of Equation 4, is:

W𝑛 (𝑞, 𝑆) =
𝑛∑︁

ℎ=1

(
ℎ−1∏
𝑖=1

(P1𝑡𝑖 ) ·P0𝑡ℎ ·
𝑛−2∏

𝑖=𝑛−ℎ
(G(𝑞, 𝑛 − 𝑖) 𝑆) · G(𝑞, 1)) +

𝑛∏
𝑖=1

P1𝑡𝑖 ·
𝑛−1∏
𝑖=0

𝑆G(𝑞, 𝑛 − 𝑖). (5)

Proof. Weproceed by induction. If𝑛 = 0, w0 = I and W0 =
∑

0

𝑘=1
(. . . )+∏0

𝑖=1 P1𝑡𝑖 ·
∏−1

𝑖=0 [ 𝑠 ]G(𝑞, 𝑛−
𝑖) = I. Let’s consider w𝑛+1 = (P0𝑡

1

+ P1𝑡
1

· S(W𝑛) · [ 𝑠 ])G(𝑞, 1). By inductive hypothesis w𝑛 = W𝑛 , thus
we need to compute S(W𝑛):

S(W𝑛) =
𝑛∑︁

𝑘=1

(
𝑘−1∏
𝑖=1

(P1𝑡𝑖+1 ) ·P0𝑡𝑘+1 ·
𝑛−2∏

𝑖=𝑛−𝑘
(G(𝑞, 𝑛−𝑖 +1) [ 𝑠 ]) ·G(𝑞, 2)) +

𝑛∏
𝑖=1

P1𝑡𝑖+1 ·
𝑛−1∏
𝑖=0

[ 𝑠 ]G(𝑞, 𝑛−𝑖 +1).

The initial and final values of the first and third products can be updated to remove the +1 from the

indices, resulting in:

S(W𝑛) =
𝑛∑︁

𝑘=1

(
(𝑘+1)−1∏

𝑖=2

(P1𝑡𝑖 )·P0𝑡𝑘+1 ·
𝑛−2∏

𝑖=𝑛−𝑘
(G(𝑞, (𝑛+1)−𝑖) [ 𝑠 ])·G(𝑞, 2))+

𝑛+1∏
𝑖=2

P1𝑡𝑖 ·
𝑛−1∏
𝑖=0

[ 𝑠 ]G(𝑞, (𝑛+1)−𝑖).

Finally, the 𝑘 + 1 can be collected, and the summation indices can be updated, resulting in:

S(W𝑛) =
𝑛+1∑︁
𝑘=2

(
𝑘−1∏
𝑖=2

(P1𝑡𝑖 ) ·P0𝑡𝑘 ·
𝑛−2∏

𝑖=𝑛−(𝑘−1)
(G(𝑞, (𝑛+1)−𝑖) [ 𝑠 ]) ·G(𝑞, 2))+

𝑛+1∏
𝑖=2

P1𝑡𝑖 ·
𝑛−1∏
𝑖=0

[ 𝑠 ]G(𝑞, (𝑛+1)−𝑖).

Now we sobstitude this equation in w𝑛+1 = P0𝑡
1

· G(𝑞, 1) + P1𝑡
1

· S(W𝑛) · [ 𝑠 ] · G(𝑞, 1). Initially, we
compute w′ = P1𝑡

1

· S(W𝑛), in particular:

w′ =P1𝑡
1

( 𝑛+1∑︁
𝑘=2

(
𝑘−1∏
𝑖=2

(P1𝑡𝑖 )P0𝑡𝑘
𝑛−2∏

𝑖=𝑛−(𝑘−1)
(G(𝑞, (𝑛 + 1) − 𝑖) [ 𝑠 ])G(𝑞, 2)) +

𝑛+1∏
𝑖=2

P1𝑡𝑖

𝑛−1∏
𝑖=0

[ 𝑠 ]G(𝑞, (𝑛 + 1) − 𝑖)
)

=

𝑛+1∑︁
𝑘=2

(P1𝑡
1

𝑘−1∏
𝑖=2

(P1𝑡𝑖 )P0𝑡𝑘
𝑛−2∏

𝑖=𝑛−(𝑘−1)
(G(𝑞, (𝑛 + 1) − 𝑖) [ 𝑠 ])G(𝑞, 2)) + P1𝑡

1

𝑛+1∏
𝑖=2

P1𝑡𝑖

𝑛−1∏
𝑖=0

[ 𝑠 ]G(𝑞, (𝑛 + 1) − 𝑖)

=

𝑛+1∑︁
𝑘=2

(
𝑘−1∏
𝑖=1

(P1𝑡𝑖 )P0𝑡𝑘
𝑛−2∏

𝑖=𝑛−(𝑘−1)
(G(𝑞, (𝑛 + 1) − 𝑖) [ 𝑠 ])G(𝑞, 2)) +

𝑛+1∏
𝑖=1

P1𝑡𝑖

𝑛−1∏
𝑖=0

[ 𝑠 ]G(𝑞, (𝑛 + 1) − 𝑖).

https://arxiv.org/abs/1402.5172
http://arxiv.org/abs/1402.5172
https://doi.org/10.1145/3649811
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https://arxiv.org/abs/2408.10054
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Secondly, let’s consider w′′ = w′ · [ 𝑠 ] · G(𝑞, 1), it result in:

w′′ =
( 𝑛+1∑︁
𝑘=2

(
𝑘−1∏
𝑖=1

(P1𝑡𝑖 )P0𝑡𝑘
𝑛−2∏

𝑖=𝑛−(𝑘−1)
(G(𝑞, (𝑛 + 1) − 𝑖) [ 𝑠 ])G(𝑞, 2))

+
𝑛+1∏
𝑖=1

P1𝑡𝑖

𝑛−1∏
𝑖=0

[ 𝑠 ]G(𝑞, (𝑛 + 1) − 𝑖)
)
[ 𝑠 ]G(𝑞, 1)

=

𝑛+1∑︁
𝑘=2

(
𝑘−1∏
𝑖=1

(P1𝑡𝑖 )P0𝑡𝑘
𝑛−2∏

𝑖=𝑛−(𝑘−1)
(G(𝑞, (𝑛 + 1) − 𝑖) [ 𝑠 ]

)
G(𝑞, 2) [ 𝑠 ]G(𝑞, 1))

+
𝑛+1∏
𝑖=1

P1𝑡𝑖

𝑛−1∏
𝑖=0

[ 𝑠 ]G(𝑞, (𝑛 + 1) − 𝑖) [ 𝑠 ]G(𝑞, 1)

If we consider the second and fourth products, we can include G(𝑞, 2) [ 𝑠 ] by updating the indices.

Specifically, in the first product, when 𝑖 = 𝑛 − 2, we have 𝑛 + 1 − 𝑛 + 2 = 3. Therefore, by setting

𝑛 − 1 as the upper limit of the product, we can include G(𝑞, 2) [ 𝑠 ] in the product. Similarly, in the

fourth product, when 𝑖 = 𝑛 − 1, [ 𝑠 ]G(𝑞, 2) is included. By varying the product from 0 to 𝑛, we also

include [ 𝑠 ]G(𝑞, 1). So finally, we can write w′′ as:

w′′ =
𝑛+1∑︁
𝑘=2

(
𝑘−1∏
𝑖=1

(P1𝑡𝑖 )P0𝑡𝑘
𝑛−1∏

𝑖=𝑛−(𝑘−1)
(G(𝑞, (𝑛 + 1) − 𝑖) [ 𝑠 ])G(𝑞, 1)) +

𝑛+1∏
𝑖=1

P1𝑡𝑖

𝑛∏
𝑖=0

[ 𝑠 ]G(𝑞, (𝑛 + 1) − 𝑖).

Finally, since W𝑛+1 = P0𝑡
1

G(𝑞, 1)+W′′ and (∏𝑘−1
𝑖=1 (P1𝑡𝑖 )P0𝑡𝑘

∏𝑛−1
𝑖=𝑛−(𝑘−1) (G(𝑞, (𝑛+1)−𝑖) [ 𝑠 ])G(𝑞, 1))𝑘=1 =

P0𝑡
1

· G(𝑞, 1) we can write:

w𝑛+1 =
𝑛+1∑︁
𝑘=1

(
𝑘−1∏
𝑖=1

(P1𝑡𝑖 )P0𝑡𝑘
𝑛−1∏

𝑖=(𝑛+1)−𝑘
(G(𝑞, (𝑛 + 1) − 𝑖) [ 𝑠 ])G(𝑞, 1)) +

𝑛+1∏
𝑖=1

P1𝑡𝑖

𝑛∏
𝑖=0

[ 𝑠 ]G(𝑞, (𝑛 + 1) − 𝑖),

i.e., we write W𝑛+1 in the form of Equation 5.

□

Proposition 5.3. The closed formula of Equation 9 is:

L𝑛 (𝑞, 𝑆) =
𝑛∑︁

𝑘=1

(
𝑘−1∏
𝑖=1

(P1𝑡𝑖 ) · P0𝑡𝑘 ·
𝑛−2∏

𝑖=𝑛−𝑘
(G(𝑞, 𝑛 − 𝑖) · 𝑆) · G(𝑞, 1)) . (10)

Proof. If 𝑛 = 0, l0 = 0 and L =
∑

0

𝑘=1
(. . . ) = 0. By inductive hypothesis,

l𝑛 =

𝑛∑︁
𝑘=1

(
𝑘−1∏
𝑖=1

(P1𝑡𝑖 ) · P0𝑡𝑘 ·
𝑛−2∏

𝑖=𝑛−𝑘
(G(𝑞, 𝑛 − 𝑖)⟦ 𝑠 ⟧) · G(𝑞, 1)).

Let’s consider l𝑛+1 = (P0𝑡
1

+ P1𝑡
1

· S(l𝑛) · ⟦ 𝑠 ⟧)G(𝑞, 1). By inductive hypothesis l𝑛 = L𝑛 . First we
compute S(L𝑛), in particular,

S(L𝑛) =
𝑛∑︁

𝑘=1

(
𝑘−1∏
𝑖=1

(P1𝑡𝑖+1 ) · P0𝑡𝑘+1 ·
𝑛−2∏

𝑖=𝑛−𝑘
(G(𝑞, 𝑛 − 𝑖 + 1)⟦ 𝑠 ⟧) · G(𝑞, 2)) .
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The initial and final values of the first product can be updated to remove the +1 from the indices,

resulting in:

S(L𝑛) =
𝑛∑︁

𝑘=1

(
(𝑘+1)−1∏

𝑖=2

(P1𝑡𝑖 ) · P0𝑡𝑘+1 ·
𝑛−2∏

𝑖=𝑛−𝑘
(G(𝑞, (𝑛 + 1) − 𝑖)⟦ 𝑠 ⟧) · G(𝑞, 2)).

Then, the 𝑘 + 1 can be collected, and the summation indices can be updated, resulting in the

following:

S(L𝑛) =
𝑛+1∑︁
𝑘=2

(
𝑘−1∏
𝑖=2

(P1𝑡𝑖 ) · P0𝑡𝑘 ·
𝑛−2∏

𝑖=𝑛−(𝑘−1)
(G(𝑞, (𝑛 + 1) − 𝑖)⟦ 𝑠 ⟧) · G(𝑞, 2)) .

Now we sobstitude this equation in l𝑛+1 = P0𝑡
1

· G(𝑞, 1) + P1𝑡
1

· S(L𝑛) · ⟦ 𝑠 ⟧ · G(𝑞, 1). Initially, we
compute l′ = P1𝑡

1

· S(L𝑛), in particular:

l′ =P1𝑡
1

( 𝑛+1∑︁
𝑘=2

𝑘−1∏
𝑖=2

(P1𝑡𝑖 )P0𝑡𝑘
𝑛−2∏

𝑖=𝑛−(𝑘−1)
(G(𝑞, (𝑛 + 1) − 𝑖)⟦ 𝑠 ⟧)G(𝑞, 2)

)
=

𝑛+1∑︁
𝑘=2

(P1𝑡
1

𝑘−1∏
𝑖=2

(P1𝑡𝑖 )P0𝑡𝑘
𝑛−2∏

𝑖=𝑛−(𝑘−1)
(G(𝑞, (𝑛 + 1) − 𝑖)⟦ 𝑠 ⟧)G(𝑞, 2))

=

𝑛+1∑︁
𝑘=2

(
𝑘−1∏
𝑖=1

(P1𝑡𝑖 )P0𝑡𝑘
𝑛−2∏

𝑖=𝑛−(𝑘−1)
(G(𝑞, (𝑛 + 1) − 𝑖)⟦ 𝑠 ⟧)G(𝑞, 2)) .

Secondly, let’s consider l′′ = l′ · ⟦ 𝑠 ⟧ · G(𝑞, 1), it result in:

l′′ =
( 𝑛+1∑︁
𝑘=2

𝑘−1∏
𝑖=1

(P1𝑡𝑖 )P0𝑡𝑘
𝑛−2∏

𝑖=𝑛−(𝑘−1)
(G(𝑞, (𝑛 + 1) − 𝑖)⟦ 𝑠 ⟧)G(𝑞, 2)

)
⟦ 𝑠 ⟧G(𝑞, 1) =

=

𝑛+1∑︁
𝑘=2

𝑘−1∏
𝑖=1

(P1𝑡𝑖 )P0𝑡𝑘
𝑛−2∏

𝑖=𝑛−(𝑘−1)
(G(𝑞, (𝑛 + 1) − 𝑖)⟦ 𝑠 ⟧

)
G(𝑞, 2)⟦ 𝑠 ⟧G(𝑞, 1).

If we consider the second product, we can includeG(𝑞, 2)⟦ 𝑠 ⟧ by updating the indices. Specifically,
when 𝑖 = 𝑛 − 2, 𝑛 + 1 − 𝑛 + 2 = 3, therefore, by setting 𝑛 − 1 as the upper limit of the product, we

can include G(𝑞, 2)⟦ 𝑠 ⟧ in the product. So finally, we can write l′′ as:

l′′ =
𝑛+1∑︁
𝑘=2

𝑘−1∏
𝑖=1

(P1𝑡𝑖 )P0𝑡𝑘
𝑛−1∏

𝑖=𝑛−(𝑘−1)
(G(𝑞, (𝑛 + 1) − 𝑖)⟦ 𝑠 ⟧)G(𝑞, 1).

Finally, since l𝑛+1 = P0𝑡
1

G(𝑞, 1)+l′′ and (∏𝑘−1
𝑖=1 (P1𝑡𝑖 )P0𝑡𝑘

∏𝑛−1
𝑖=𝑛−(𝑘−1) (G(𝑞, (𝑛+1)−𝑖)⟦ 𝑠 ⟧)G(𝑞, 1))𝑘=1 =

P0𝑡
1

· G(𝑞, 1) we can write:

l𝑛+1 =
𝑛+1∑︁
𝑘=1

𝑘−1∏
𝑖=1

(P1𝑡𝑖 )P0𝑡𝑘
𝑛−1∏

𝑖=(𝑛+1)−𝑘
(G(𝑞, (𝑛 + 1) − 𝑖)⟦ 𝑠 ⟧)G(𝑞, 1),

i.e., we have writen l𝑛+1 in the form of Equation 10.

□
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