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Abstract. In principle, the design and implementation of quantum pro-
gramming languages are the same essential tasks as for conventional
(classical) programming languages. High-level programming constructs
and compilation tools are structurally similar in both cases. The differ-
ence is mainly in the hardware machine executing the final code, which
in the case of quantum programming languages is a quantum processor,
i.e. a physical object obeying the laws of quantum mechanics. Therefore,
special technical solutions are required to comply with such laws. In this
paper, we show how static analysis can guarantee the correct implemen-
tation of quantum programs by introducing two data-flow analyses for
detecting some ‘wrong’ uses of quantum variables. A compiler including
such analyses would allow for a higher level of abstraction in the quan-
tum language, relieving the programmer of low-level tasks such as the
safe removal of temporary variables.

1 Introduction

With the rapid progress of quantum technology thanks to the effort of many
companies that have been working for years with the objective of building a
large-scale quantum computer, and the growing number of applications where
quantum computers are employed to work on practical use cases in industry, the
study of quantum programming languages is becoming more and more valuable.
In fact, we are witnessing an increasing number of quantum computing language
proposals based mostly on open-source projects with the objective of accelerating
progress by sharing knowledge and resources. Current research and implemen-
tation efforts have mainly produced languages with a low level of abstraction
focused on circuit description and optimizations, with only a few attempts at
the design and implementation of high-level quantum programming languages
(see e.g. Silq [6], Quipper [14], QWire [33], Qunity [43] and Guppy [37]). This
task is not a trivial one and cannot rely completely on the experience and the
knowledge acquired in the development of classical programming languages due
to the difference in the fundamental elements that are the basis of the system
to be ‘programmed’, which is classical in one case and quantum in the other.

For example, almost all high-level programming languages provide variables
as some information holders. However, while in classical languages, variables are
abstractions of memory regions where information can be stored and retrieved,
in quantum languages, they are rather abstractions of the information contained
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in the physical space of quantum states (i.e. vectors in a Hilbert space). Although
the advantages offered by these abstractions (in terms of easy writing for the
programmer) are the same in both classical and quantum contexts, quantum
variables introduce new challenges strictly related to the specific features of
quantum computation. In fact, the implementation of a simple operation such
as duplicating a quantum variable is not trivial due to the no-cloning theorem
[25, Chapter 12]. For the same reason, a simple statement like the assignment
requires a more complicated treatment than in the classical setting to avoid
overwriting the assigned variable.

It is also very important (contrary to the classical setting) to take care of
unused quantum variables, which, if not appropriately dealt with, could have a
negative impact on the correctness of the result of the whole program due to the
implicit measurement principle [25, Section 4.4]). In fact, while unused variables
require no action in classical computation, unused quantum variables correspond
to portions of the quantum circuit that would be measured even if no explicit
measurement operator is applied. This may have unexpected side effects when
it involves entangled states. In fact, such states are so strongly correlated that
measuring one part also affects the other. Thus, a quantum program with unused
quantum variables requires careful implementation, ensuring that at the circuit
level, they are appropriately ‘reset’ before the end of the execution of the program
to eliminate the presence of entanglement. This process is commonly referred
to as uncomputation. To overcome these problems, the most common solution
adopted in the literature of quantum programming languages is linear typing,
which forces the programmer to use each quantum variable exactly once. This
prevents copying variables (i.e., using them twice) and their implicit discarding
(i.e., never using them). Such languages typically provide specific functions (like
the forget function in Silq and the discard function in Guppy and QWIRE),
leaving to the programmer’s responsibility the task of triggering uncomputation
where needed.

In this paper, we introduce an approach based on static analysis instead of a
type checker. This approach introduces more automation in the compilation pro-
cess, reducing the number of error messages with respect to a type system based
approach and disburdening the programmer of explicitly deciding when uncom-
putation is to be performed. In particular, we relax the exactly once constraint
of linear type systems, simply requiring that variables are used at most once. To
this purpose, we define a preliminary data flow analysis to determine if variables
are used at most once. We then use a second data flow analysis to detect, for
each program point, which variables are not used in all execution paths. The
result of this analysis gives the compiler useful information on the variables to
be uncomputed and allows transforming a program that uses variables ‘at most
once’ into a program that uses variables ‘exactly once’. With this information,
uncomputing variables can be automatically done by the compiler rather than
manually by the programmer. Furthermore, adopting a static analysis approach
instead of the most commonly used type of system introduces greater flexibility
in language design, as it is independent of the language itself and can potentially
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be integrated with other analyses to identify infeasible paths, thereby increasing
accuracy. Any quantum language that relies on linear typing could benefit from
our procedure, e.g. QWIRE [33], Silq [6], and Guppy [23], etc. We can apply
our approach also to languages that do not use linear types, like Quipper [14],
to ensure their correctness. In this paper, we will demonstrate our analysis on
Guppy, an embedded quantum programming language in Python that employs
quantum variables instead of wires and is provided with a control flow based on
classical guards and measurements.

For the reader convenience we introduce the necessary notions of quantum
computation in Sect. 2. We then address the challenges faced in quantum pro-
gramming languages (Sect. 3) and introduce the syntax of the language that we
use to present our analyses (Sect. 4), which we define in Sect. 5. In Sect. 6, we
explain how to use the information collected by the analyses, and we demon-
strate them by an example in Sect. 7. Finally, in Sect. 8, we discuss some related
work and in Sect. 9, we conclude with a summary of contributions and some
future research directions.

2 Quantum Computation

Programs in a quantum programming language are designed to run on quan-
tum computers and are very different from classical computing programs. To
understand these languages and work with them effectively, a sound knowledge
of the principles of quantum mechanics and the underlying mathematics is often
essential. In this section, we briefly recall the main aspects of quantum compu-
tation that make this computational model different from the classical one. We
will refer to the circuit model of computation and highlight such differences in
terms of the meaning of wires and gates in a classical and a quantum circuit.
In a quantum circuit, wires represent quantum bits, or qubits, rather than bits.
This means that the classical unit of information (the bit) generates, with its two
values 0 and 1, a complex vector space (a quantum system), where each complex
unitary vector is the state of a qubit. This is, therefore, a linear combination of
the form |ψ〉 = α |0〉 + β |1〉, where α and β are complex numbers from which
we can infer the probability of the state resulting in 1 or 0, respectively. Such
probabilities are obtained as |α|2 and |β|2, which explains why quantum states
must be unitary, i.e. |α|2 + |β|2 = 1 must hold1.

The behaviour of quantum circuits is determined by two important quan-
tum phenomena which have no classical counterparts, namely entanglement and
measurement. The measurement of a quantum state |ψ〉 is an operation that
allows us to extract a classical result from the quantum superposition (or linear
combination) by making the quantum state collapse to 0 or 1 with the asso-
ciated probability. Measurement is typically the last operation in a quantum
circuit and is applied to get the final (classical) result of the coherent (i.e. in
superposition) evolution of the quantum system represented by the circuit. The
1 The ket notation |ψ〉 is due to Dirac and represents the vector (α, β)T in linear

algebraic notation.
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entanglement phenomenon occurs when, as a result of the application of specific
quantum gates, two or more qubits become so strongly correlated that they are
no longer separable. As a consequence, measuring one of the component qubits
affects the probability distribution on the whole state by changing the probabil-
ity associated with the other qubits, even if these are not (explicitly) measured.

The state of a quantum circuit on n wires (qubits) corresponds to a unitary
vector in the 2n-dimensional Hilbert space (H2n) obtained by composing by
tensor product the unitary states corresponding to each wire (qubit), i.e. a vector
in a 2-dimensional complex Hilbert space (H2) [25, Chapter 2]. A state like
|01〉, in H2 ⊗ H2 is not entangled as it can be expressed as the tensor product
|0〉 ⊗ |1〉, of the states of the two-component qubits. On the other hand, the
state 1/

√
2(|00〉 + |11〉) in the same Hilbert space H2 ⊗ H2 is entangled because

it cannot be expressed as a tensor product of the states of the two-component
qubits.

Throughout the paper, we will adopt the following convention to distinguish
between qubits (or qubit registers) as wires of a physical quantum circuit and
their high-level representation as a variable in a quantum program. For a variable
q, we will write |ψ〉q to indicate that q represents the state |ψ〉 of a qubit register.
For entangled states, such as for example 1/

√
2(|01〉+|10〉, we will write 1/

√
2(|01〉+

|10〉)p,q to indicate that variable p represents the first qubit and q represents the
second qubit of the entangled pair.

2.1 The Need for Uncomputation

Entanglement is a powerful feature of quantum computation; it is at the base of
important quantum communication protocols, which cannot be realized by clas-
sical means (see, for example, quantum teleportation [25, Chapter 1.3]). How-
ever, this feature introduces some complications when it comes to the imple-
mentation of quantum programming languages due to the inevitable presence of
temporary variables in a program. At the circuit level, the problem arises in the
computation of a classical irreversible function on a quantum computer, as this
requires additional (auxiliary) qubits to obtain reversibility and then unitarity
[22, Chapter 7]. It turns out that when feeding the circuit with a superposition
of input states, the auxiliary qubits become entangled with the output qubits,
and their elimination (which induces an implicit measurement) affects the state
of the output qubits. The solution to this problem is to ‘uncompute’ these auxil-
iary qubits before their elimination, returning them to their initial unentangled
state. Therefore, at the program level, temporary quantum variables cannot eas-
ily be dropped as we do with temporary values in classical programs, and a
careful compilation is necessary to avoid the generation of an incorrect circuit.
Moreover, quantum variables cannot be overwritten because this would imply
copying a quantum state at the physical level, which, as we know, is impossible
[20, Chapter 5].

We illustrate the problem of uncomputation with the circuit in Fig. 1a.
This circuit computes (x ⊕ y) ∧ y, i.e. the conjunction of y and the exclusive-
or between x and y, using a temporary qubit a and storing the result in r.
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Fig. 1. Circuits with (b) and without (a) computation

Firstly, we apply the Hadamard operation (H) to y, thus obtaining the state
ψ1 = 1/

√
2(|0000〉xyra + |0100〉xyra); secondly, we compute x⊕ y through the two

controlled-NOT gates obtaining the state ψ′
1 = 1/

√
2(|0000〉xyra + |0101〉xyra);

finally, we calculate a ∧ y in r using a Toffoli gate2 getting the state ψ2 =
1/

√
2(|0000〉xyra + |0111〉xyra). Now, if we decided to delete the qubit a (since it

is no longer needed), the state of the first three qubits would collapse with prob-
ability 1/2 to |000〉xyr or |011〉xyr, depending on the result of the implicit mea-
surement. This incorrect result is due to the principle of implicit measurement
[25, Chapter 4], (deleting a qubit means measuring it) and the entanglement
introduced by the controlled-NOT gate.

The example clearly shows the need of uncomputing all temporary variables
by resetting their initial state to ensure their (implicit or explicit) removal with-
out side effects. The simplest way to uncompute a qubit is to take all previously
applied operations and re-apply their inverses in reverse order, returning the
qubit to its initial unentangled state. In Fig. 1b, we show that if we uncompute
a before the final measurement, introducing additional gates to bring the value
of a back to |0〉 before deleting it (causing an implicit measurement), we do not
lose information about the other three qubits.

3 Challenges in Quantum Programming Languages

In this section, we discuss in more detail the challenges that one needs to tackle
when designing a quantum programming language. As already pointed out,
avoiding the copy and the implicit discarding of quantum variables is crucial
for the correctness of the program results. A typically adopted solution is linear
typing, which forces the programmer to use variables exactly once so that when
a variable x is used the first time, it is ‘consumed’ and no longer available. We
will exemplify the effects of a linear type system by means of programs written
in the Guppy language [37], a Python-embedded language, which we take as
a model of a quantum language with linear typing. A program like the one in
Fig. 2 does not pass the check of a linear type checker since the variable a is used
twice.
2 The Toffoli gate corresponds to a double controlled not; in particular we negate the

target if both controllers are 1.
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Fig. 2. Simple function that uses a consumed variable

Fig. 3. Examples of Guppy programs

Linear typing also ensures that no unused variables occur in a program,
i.e. all program variables must be consumed before the end of the execution.
For example, consider the implementation of the circuits in Fig. 1 in Guppy,
given in Fig. 3. The Guppy compiler would reject the program in Fig. 3a since
a is not consumed. Instead, the code in Fig. 3b would be assessed as well-typed
since the Guppy primitive discard(a) consumes a. In general, we cannot say
if this program will be compiled in the circuit in Fig. 1b since it depends on
the implementation of the discard primitive; nevertheless, the final result, after
the return, will always be the same correct result. Implicit discarding also occurs
when we redefine a non-consumed variable as in the code of Fig. 4a. This program
is ill-typed since the variable b is not consumed when redefined. In this case, the
type checker returns an error indicating that the first b is not consumed. Instead,
the code in Fig. 4b is well-typed since we properly discard (and thus consume)
b before redefining it.

With the aim of relaxing the constraints imposed by linear type systems, we
propose a different approach, which is based on static analysis and consists of
two steps: first, we check that variables are used at most once, filtering out pro-
grams that violate this rule; second, we identify unused and overwritten variables
and automatically insert the discard function. Two key analyses are necessary
for our approach: a forward data-flow analysis (Consuming Analysis) that col-
lects information about the availability of variables at each program point and a
backward data-flow analysis (Uncomputation Analysis) that collects information
about the usage of variables. The information resulting from the first analysis
allows the compiler to verify, in place of the type checker, that the programs use
variables at most once. Then, the second analysis gives the necessary informa-
tion on the program points where to insert the discard function, transforming
a program that uses variables at most once into a program that uses variables
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Fig. 4. Two simple programs where we assume that a is already defined

exactly once. This procedure introduces greater flexibility than the type system
approach, enhancing the language usability. In fact, with our analysis, we still
reject programs that use consumed variables, but we automatically insert the
discard when needed, relieving the programmer from this task. As an example,
the function in Fig. 2 is still rejected, but functions in Fig. 3a and Fig. 4a are
automatically transformed at compile time, respectively, into the ones in Fig. 3b
and Fig. 4b.

4 Control Flow Graph

We define our static analyses as data-flow analyses based on control flow graphs.
Following [7,27], we consider the Control Flow Graphs (CFG) language defined
by the syntax:

c ::= label
∣
∣ c; c

∣
∣ c ⊕ c

∣
∣ c∗

label ::= NonZero(b)
∣
∣ Zero(b)

∣
∣ stm

(1)

where the term c; c represents sequential composition; the term c ⊕ c is the
choice command that corresponds to the execution of one of the two possible
branches; the term c∗ is the Kleene closure of cn, n ∈ N, where cn is the
composition c; . . . c;, n times. For a Boolean expression b and a statement stm
(both defined by the grammar of a specific language), NonZero(b) is a special
label that indicates that in its path b is true. In contrast, Zero(b) indicates that
the Boolean condition b is false in its path. This syntax is general enough to cover
deterministic imperative languages [44, Chapter 14, Exercise 14.4] whenever stm
contains at least an assignment statement and a null operator, such as skip. In
fact, in this language, we can write both the while and if then else statements
as follows:

if b then c1 else c2 ≡ (NonZero(b); c1) ⊕ (Zero(b); c2)
while b do c ≡ (NonZero(b); c)∗; Zero(b)

The language defined by (1) is interesting because it corresponds precisely to
the control flow graph representation of programs, on which standard data-flow
analysis is usually performed [41]. The CFG associated with a program is a
graph with a start node corresponding to the program entry point, an end node
corresponding to the exit point, and all other nodes corresponding to interme-
diate points in the execution of the program; each edge of the graph has a label
that represents the change produced by the execution of an instruction of the
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Fig. 5. Graphical representation of language c, the CFG.

language that is analysed. Hence, label defines the language of CFG edge labels
displayed in Fig. 5a where l ∈ label, while the other elements of c determine how
we compose the edges depending on their labels as displayed in Fig. 5b for the
CFG corresponding to the sequential composition c; c, in Fig. 5c for the nonde-
terministic choice c ⊕ c and in Fig. 5d for the iteration c∗. In this way, we can
define a new analysis simply by providing abstract semantics for the instructions
defining stm and for the truth evaluation of b, namely for the language of labels
label.

In the following, if V is the set of program points, the CFG will be defined as
sets of edges, labelled in label, between nodes in V , i.e., as subsets of V ×label×V .

CFG for Guppy Programs. We will demonstrate our approach on the Guppy
language [37]. This is a Python-embedded language whose compiler runs within
the Python interpreter, but the compiled program is independent of the Python
runtime. Guppy adopts Python’s control flow (if, for, while, and return state-
ments), allowing measurement outcomes as a guard.

When we analyse a concrete language, we need to specify the label category
of the syntax in (1) by defining stm, i.e. the syntax of the language statements
that will label the CFG. This section extends the label syntax to represent a
control flow graph Guppy language. Like Python, a Guppy program is a set of
function declarations. We can represent each function by a CFG and a program
(i.e., a set of functions) as a set of CFGs.

Let Vq be the set of quantum variables, Vc the set of classical variables and
V = Vq ∪ Vc the set of variables of a program. We use �x ∈ V

n
c , �q ∈ V

n
q and

�v ∈ V
n, where n ∈ N, for denoting, respectively, a list of classical, quantum or

both types of variables. Note that the list could be empty.
We denote by b a generic Boolean expression composed of classical variables

or measurement of quantum variables (e.g. ¬x ∧ measure(q)) and e to indicate
a generic classical expression (that does not contain any quantum variable). We
can extend the syntax in Eq. 1, with Guppy statements as follows:

stm ::= pass
∣
∣ A:�v

∣
∣ �v = fun(�v)

∣
∣ �x = e

∣
∣ return �v

∣
∣ discard(�q) (2)

where pass is the Python statement that corresponds to skip, A:�v declares which
variables are the function arguments and fun indicates both built-in function
(measure, quantum gates and initialisation function qubit()) and user-defined
functions.
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5 Data-Flow Analyses

In this section, we introduce the two key analyses needed to implement our app-
roach: a forward data flow analysis, which we call consuming analysis, gathering
information about the availability of variables at each program point, and a
backward data flow analysis, which we call uncomputation analysis, gathering
information about the usage of variables.

5.1 Consuming Analysis

This analysis aims to detect the available variables at each node of the program’s
CFG, i.e. the variables that are defined and not yet consumed. To this aim, we
must check that, in all paths, each used variable is defined and not yet con-
sumed. This means that the analysis must be definite [41], i.e., the information
propagates among nodes by intersection.

Let Vq be the set of quantum variables. We define the lattice, 〈℘(Vq),⊇〉,
of the powerset of Vq ordered by inverse inclusion. Thus, the top element is ∅,
while the bottom is Vq. For expressions e, we denote by Q(e) ⊆ Vq the set
of the quantum variables in e. We define the (abstract) consuming semantics
� l � : ℘(Vq) → ℘(Vq) as the abstract edge effects defined for each label l ∈ label,
as follows:

� NonZero(b) �D =� Zero(b) �D = D � Q(b)
� pass �D =� �x = e �D = D

� return �v �D =D � Q(�v)
��v1 = fun(�v2) �D =(D � Q(�v2)) ∪ Q(�v1)

� A:�v �D =D ∪ Q(�v)
� discard(�q) �D =D � {�q}

(3)

As a general rule, since any use consumes variables, the abstract semantics is
simple: when a variable is used, it is removed from D, and it is added when
defined. In particular, for Boolean expressions, since in b the only quantum
variables that can be used are the ones that are measured, we remove Q(b) from
D.

Proposition 1 (Consuming semantics distributivity). The abstract
semantics � · � defined in Eq. 3 is distributive w.r.t. intersection, i.e., for all labels
l and subsets X ⊆ ℘(Vq), we have

� l �(∩X) =
⋂

{� l �D|D ∈ X}

Proof (Sketch). This follows easily from the definition of � l � and the properties
of the set-theoretic operations (see e.g. [1,26,41]).
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Fig. 6. CFG of program in Fig. 2 with the computed D for each node

Computing the Analysis. To compute the CFG analysis, we need to compute
the set D for each node of the CFG [41], namely at each program point of the
analysed program. Since the analysis is forward, the set D at node v, denoted
D[v], depends on the sets D[u] of its predecessors u, and the label semantics of
the edges entering v. Let start (end) be the starting (exit) node of a CFG G.
For each v ∈ G, we define

D[v] =

{

∅ if v = start
⋂ {

� l �(D[u]) | (u, l, v) ∈ G} otherwise

thus obtaining a system of n = |V | equations in n unknowns, which can be solved
by fix-point, achieving the so-called Maximum Fixed Point (MFP) solution [41].
As shown in [41], this solution provides the best solution we can compute on a
CFG. In fact, Proposition 1 implies that, for each v ∈ V , the computed available
variables set D[v] corresponds to the MOP (Meet Over all Paths), namely

D∗[v] =
⋂

{

�π �

∣
∣
∣
∣

π = k1, . . . , kn is a path from start to v,
�π �

def= � kn � ◦ · · · ◦ � k1 �

}

Soundness of the Analysis. By using the equality with the MOP solution, we
can prove that, for each program point, the computed set of available variables
is indeed an under-approximation of the available variables.

Theorem 1. Given an edge (u, l, v), if the command represented by l uses a
variable q which has not been defined or has been already consumed in at least
one path, then q /∈ D[u].

Proof (Sketch). This follows directly from how we combine the paths’ semantics.
In fact, if a variable is not defined or is consumed in at least one path, it will
not be included in D[u] thanks to the intersection operator.

As an example, consider the simple program in Fig. 2.
This analysis shows that in node 3, the variable a is not available; in fact,

the edge (3, 4) leads to an error.
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5.2 Uncomputation Analysis

The uncomputation analysis determines the appropriate locations where to insert
the discard function. To this purpose, we must identify those unused variables
which lead to implicit discarding. For this analysis, the notion of live variable
comes in handy. We recall that a variable x is called live at point u if u is in
a path between a previous definition of x and a following use of x (without
interleaving further definitions of x) [1,26]. However, to figure out where it is
necessary to uncompute, we need to know not only where a variable is live but
also where the last use of the variable consumes it. Hence, we extend the notion
of liveness to include this additional information.

Definition 1. A quantum variable q ∈ Vq is unsafe live at point u if it is live
and it is not consumed in at least one path starting from u; q is said to be safe
live if it is consumed or returned in all paths from u.

To simultaneously compute these two types of liveness, we define the abstract
domain as a pair of sets of quantum variables. The analysis computes (S, U) ∈
℘(Vq)×℘(Vq), where U ⊆ Vq is the set of unsafe live variables and S ⊆ Vq is the
set of safe live variables. Note that while unsafety will be over-approximated as
it requires that the property of being non-consumed holds at least in one exiting
path, safety requires the property holding on all the exiting paths, leading there-
fore to an under-approximation. A computational ordering �, allowing for simul-
taneously over-approximating unsafe live variables and under-approximating
safe live variables, can be defined on the abstract domain ℘(Vq) × ℘(Vq) as
follows.

Definition 2. Let (S1, U1), (S2, U2) ∈ ℘(Vq) × ℘(Vq), we define

(S1, U1) � (S2, U2) iff S2 ⊆ S1 and U2 ⊇ U1 ∪ (S1 � S2).

Let � be the least upper bound (lub) induced by �. It is

(S1, U1) � (S2, U2) = (S3, U3), with
S3

def= S1 ∩ S2 and U3
def= U1 ∪ U2 ∪ (S1Δ S2),

where Δ is the set-theoretic symmetric difference3.

This definition guarantees that the lub operator adds to S the variables that are
safe in all paths and to U the variables that are unsafe in at least one path. Given
that the operators of union, intersection, and symmetric difference are all both
associative and commutative, it follows that the least upper bound operator
is also associative and commutative. Moreover, as the union and intersection
operators are idempotent and AΔA = ∅, it follows that the least upper bound
operator is also idempotent.

3 Given two sets A and B, AΔB
def
= (A ∪ B) \ (A ∩ B).
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Abstract Uncomputation Semantics. We define the abstract semantics of
edge labels � l � : ℘(Vq) × ℘(Vq) → ℘(Vq) × ℘(Vq), for each l ∈ label, as follows:

� pass �(S, U) =� �x = e �(S, U) = (S, U)
� return �v �(S, U) =(S ∪ Q(�v), U)

��v1 = fun(�v2) �(S, U) = (S1, U1) where

{

S1
def= (S � Q(�v1)) ∪ Q(�v2)

U1
def= (U � Q(�v1))

� NonZero(b) �(S, U) =� Zero(b) �(S, U) = (S ∪ Q(b), U)
� A:�v �(S, U) =(S � Q(�v), U � Q(�v))

� discard(�q) �(S, U) =(S ∪ {q}, U)

The first rule deals with a classical instruction and does not change the analysis.
In the other rules, the quantum variables which are used are added to S since
all the uses consume variables. The variables �v1 and �v are removed from both
S and U in the third and fifth rule, since these instructions define the variables,
making them no more live. Since each statement consumes the variable, variables
are never added to U by the abstract semantics. Nevertheless, this set will be
updated by the join operator between paths.

Proposition 2. The abstract semantics � · � : ℘(Vq) × ℘(Vq) → ℘(Vq) × ℘(Vq)
is monotonic w.r.t. �.

Proof. We have to prove that if (S1, U1)�(S2, U2) then � l �(S1, U1)�� l �(S2, U2).
Since for all possible l, � l � changes (S1, U1) and (S2, U2) in the same ways, the
proof follows trivially by the definition of the abstract semantics.

Since the abstract semantics is monotonic and 〈℘(Vq) × ℘(Vq),�〉 is a finite
domain (as Vq is finite for all programs), we are guaranteed that by iteratively
applying the equations, we reach a fix-point.

Proposition 3. The abstract semantics � · � : ℘(Vq) × ℘(Vq) → ℘(Vq) × ℘(Vq)
is distributive, i.e., for all labels l and sets X ⊆ ℘(Vq) × ℘(Vq), we have

� l �(�X) =
⊔

{� l �(S, U)|(S, U) ∈ X}.

Proof. Thanks to the associativity of the lub operator, we need only to prove
that, given X = (S1, U1) and Y = (S2, U2), then (S3, U3)

def= � · �(X � Y ) =
� · �(X)� � · �(Y ) def= (S4, U4). The generic abstract semantics, for any l ∈ label, on
a pair (S, U) can be defined as � l �(S, U) = ((S � K) ∪ G, (U � K ′) ∪ G′) where
K,G,K ′, G′ ∈ ℘(Vars) depend on l. Firstly, we consider S1 and S2, i.e., the safe
variable sets:

S3 = ((S1 ∩ S2) � K) ∪ G = ((S1 � K) ∪ G) ∩ ((S2 � K) ∪ G) = S4

Now we consider U1 and U2, i.e., the unsafe variables are:

U3 = (((U1 ∪ U2) � K) ∪ G) ∪ (S1Δ S2)
= ((U1 � K) ∪ G) ∪ ((U1 � K) ∪ G) ∪ (S1Δ S2) = U4
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Computing the Analysis. To compute the analysis on the CFG, we need to
compute the pair (S, U) for each node of the CFG [41]. Similarly to standard
liveness, our analysis is backward, i.e., the pair (S, U) at node u depends on
the pairs (S ′, U ′) of its successors and the label semantics of the edges exiting
from u. Given a CFG G, for all node v in G, we define the following system of
equations:

(S, U)[u]

{

(∅, ∅) if u = end
⊔

{

� l �((S, U)[v])
∣
∣
∣ (u, l, v) ∈ G

}

otherwise
(4)

As we did for consuming analysis, this system can be solved by fix-point, also
obtaining, in this case, the so-called MFP solution [41]. Due to Th. 3 [1, Chapter
9][26, Chapter 2], this solution provides the best solution we can compute on
CFG, which is the MOP solution computed on the graph nodes, i.e.,

(S, U)∗[v] =
⊔

{

�π �(Se, Ue)
∣
∣
∣
∣

π = k1, . . . , kn is a path from v to end,
�π �

def= � k1 � ◦ · · · ◦ � kn �

}

,

Where end is the final node of the control flow graph, i.e., the program exit
point, and (Se, Ue) = ⊥ is the pair (S, U) holding the end point.

Soundness. By construction, U ∩ S = ∅, and if we join U and S, we obtain
the set of live variables. Hence, being the liveness analysis sound, if a variable x
is live in a point u, then x ∈ U ∪ S, with (S, U) = (S, U)[u].

Proposition 4. For each program point u, if x is unsafe live in u, then x ∈ U ,
with (S, U) = (S, U)[u].

Proof. Consider a node u and a live variable x at u. By definition, x is unsafe
live if it is not consumed in at least one path from node u to the end node.
Therefore, in at least one path, the abstract semantics does not add x in S, so
when applying the join on paths, x will be added to U .

The analysis is incomplete because the MOP solution considers all feasible paths,
including those that may never be executed. Nonetheless, this is not an issue
since uncomputation is placed only in unsafe paths. If unfeasible paths make the
variable unsafe, the uncomputation is also placed in those paths and thus will
never be performed.

Examples. First, we consider the code in Fig. 4a that we represent as a CFG
accompanied by the analysis results depicting (S, U) for each node in Fig. 7a.
In Fig. 7a, where the discard is needed, the variable b is not live. Instead, if we
analyse the correct versions of the program (Fig. 4b and Fig. 7b), we see that
after the definition, the variable b is live, thanks to the discard function.

Consider the code in Fig. 3a. Figure 8 shows the CFG corresponding to the
program and the analysis results. After node 4, the variable a is no longer
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Fig. 7. In both CFGs,on the rights the pairs (S, U)

Fig. 8. CFG corresponding to Fig. 3a, on the rights the pairs (S, U)

live; thus, in Fig. 3b, we insert the uncomputation just after edge (4, a, y, r =
toff(a, y, r), 5). The uncomputation analysis is very useful when a variable needs
to be discarded only in one branch or when an overwriting occurs in a loop. As
an example, consider the program in Fig. 9a. Since a and b are used only in one
branch, they are unsafe. In fact, when we execute the if-branch, we implicitly
discard b, and when we execute the else-branch, we implicitly discard a. In this
case, a simple analysis that detects only the live variable is not enough. Instead,
as we see in Fig. 9b, due to the lub operator, our analysis inserts both a and b
in the set U [1].

6 Applying the Analyses to Quantum Programs

It should be clear that the main motivation for the design of the analyses pre-
sented above lies in exploiting the information they provide to transform the
program automatically without requiring programmer actions. Hence, after for-
mally defining the analyses, it becomes fundamental to define the appropriate
pipeline in which they should be performed. This is represented in Fig. 10 for a
given program CFG and consists of four stages:

1. Consuming Analysis. We first perform this analysis to obtain the sets D[u]
for each node u, over-approximating the sets of variables available in u;
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Fig. 9. The function (a) consumes different variables in different branches. In particu-
lar, the if-branch consumes only a, thus implicitly discarding b, while the else-branch
consumes b, thus implicitly discarding a. In (b), we show the results of the uncomputa-
tion analysis on the CFG of the function (a) and how it detects a,b as unsafe at node
1.

Fig. 10. Analysis pipeline

2. Consuming check. We use D to check whether the program is correct, i.e.,
whether it does not use consumed or undefined variables;

3. Uncomputation Analysis. On correct programs, we perform the uncomputa-
tion analysis;

4. Discard insertion. The results of such analysis are then used to decide where
it is recommended to insert a discard, avoiding implicit discard operations.

The first and the third steps are precisely the analyses described in the previous
section. What we need now to define precisely are the procedures for performing
the second and fourth steps of the pipeline.

Consuming Check. After performing the Consuming Analysis, we obtain the
sets D[u] for each program point. First, we check if every used variable is defined
and not consumed. Moreover, we also have to check that a variable is not passed
more than once as an argument (e.g., the statement fun(q, q) is discarded since
it introduces implicit copies). As shown in Algorithm 1, to check this property,
for all edges (u, l, v), i.e., for all labels l in the CFG, we get the set of all used
variable (usedV ars), and if this set is not included in D[u] this means that
there are some variables that are used without being defined or after being
consumed, so we return an error. In Algorithm 1, we simplified the returned
message in case of an error. In the implemented version, we return a detailed
error specifying which variables generate errors and at which point the programs.
For instance, the example in Fig. 6 shows that the check fails when considering
the edge (2, b = h(a), 3) since a is not in D[2].
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Algorithm 1. Check for Variable Usage
Require: edges: control flow graph edges, D
1: for u, v in edges do
2: label ← getLabel(u, v)
3: if label is a function call then
4: if ¬ checkLegitUse(label) then
5: return ’Error: implicit copy’
6: end if
7: end if
8: usedV ars ← getUsedVars(label)
9: if usedV ars � D[u]) then

10: return ’Error, not defined variable used.’
11: end if
12: end for

Discard Insertion. The last step consists of inserting the discard function.
We must discard all variables which were not consumed or returned in at least
one path, i.e., defined and never used (not live) or used but not in all paths.
Hence, in the first case, we can identify all non-live variables and insert the
uncomputation just after their definition. In the second case, the variables, at
some program point, are in the set U determined by the Uncomputation analysis,
and we have to insert the discard only in those paths that do not consume it.
This means that, in the second case, we must check if (and where) a variable is
in U to understand where we have to insert discard. We show the algorithm in
detail in Algorithm 2.

The procedure receives as input the set of arcs and nodes from the CFG, the
list of sets pair (S, U) from the previous analysis, and the program quantum
variables set Vq. First, for each quantum variable var ∈ Vq, we check if the
variable is defined and not used, checking if, after the definition, it is live. If not,
we must insert the discard after the definition. Then, we consider all variables
that, for some nodes u, are in the sets U [u]. If var is in some U [u], there is some
node in which, in some of the paths that start in that node, the variable is safe
live, and others in which it is not live. So, for each node u of the CFG, if x is in
the set U [u], we check the successors of u. For each successor v of u, if x is not
in the set S[v] and is not in the set U [v], the node v is the head of the ‘unsafe’
path, so a discard operation is added between nodes u and v.

In Algorithm 2, we apply our algorithm to the simple examples introduced
so far. Let us consider the example in Fig. 7a. Here the assignment in edge
(1, b = h(a), 2) defines a non-live variable (b). So we insert the discard at the end
of that edge (just like we did in Fig. 4b and in Fig. 7b). Similarly, for the example
in Fig. 8, when we apply the discard insertion, the only assignment that defines a
non-live variable is the one in edge (4, a, y, r = toff(a, y, r), 5), so we insert the
discard at the end of that edge (line 6 in Fig. 3a, just like the function in Fig. 3b
shows). Now consider the function analysed in Fig. 9b. In this case, there are no
non-living variables, but two variables are in U . Applying the discard insertion
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Algorithm 2. Insert discard
Require: edges, nodes, (S, U), Vq

1: for var in Vq do
2: for u, v in getAllDefinition(cfg, var) do
3: if var /∈ (S[v] ∪ U [v]) then
4: addDiscard((u, v), var)
5: end if
6: end for
7: end for
8: for var in

⋃
u U [u] do

9: for node in nodes do
10: if var ∈ U [node] then
11: for v in successor(node) do
12: if var /∈ (S[v] ∪ U [v]) then
13: addDiscard((node, v), var)
14: end if
15: end for
16: end if
17: end for
18: end for

algorithm, we select the edge (1, NonZero(c), 2) to insert the discard of b and
(1, Zero(c), 3) to insert the discard of a.

Evaluation. We have implemented a prototype of our procedure in Python
3. The code is available at Github repository. We tested both the consuming
check and insertion of the discard operation, paying more attention to the dis-
card insertion. In particular, the discard insertion has been tested on about ten
simple programs that present redefinition of unconsumed variables inside loops,
redefinition in different computation branches and unused variables. Moreover,
all the examples in this work have been tested.

Our analysis introduces the same level of approximation as a type checker.
Both the analysis and the type system consider all possible paths, even those
that are not executable. One crucial distinction between the two approaches is
that the type system will generate an error, forcing the programmer to modify
an infeasible path. In contrast, our method will automatically modify only the
impossible path so that the program semantics will not be affected.

Moreover, our static analysis is more informative than the type system, as the
example in Fig. 11 highlights. A type checker based on linear types would return
an error at line 1, indicating that a is not consumed but giving no information
on the point where the discard must be inserted, namely the else-branch.
Instead, our approach would identify that the problem lies in the else-branch
and would pass the information to the next step of the pipeline without rejecting
the program. Consequently, even when using our approach only as a linearity
checker, it would provide more informative results than the type system. This

https://github.com/NicolaAssolini98/StaticAnalysisQuantumPrograms
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Fig. 11. Code fragment consuming variables only in one branch

Fig. 12. The example function

is particularly beneficial when the definition and the path that does not use the
variable are far apart in the code and the control flow is complicated.

7 Putting All Toghether

In this section, we apply the entire pipeline to a more complex program, detailing
the system evolution that leads to the MFP solution. Consider the function
f in Fig. 12a and the corresponding CFG in Fig. 12b. We show the system of
equations derived from the CFG in Fig. 13 and the system’s computation in
Fig. 13b. In Fig. 12b, we also indicate the sets D for each program point computed
by Consuming Analysis. Then, applying the algorithm in Algorithm 1, we raise
an error in edges (5, NonZero(measure(a)), 6) and (5, Zero(measure(a)), 7) since
we use a, which is not defined in all paths.

Figure 14a and Fig. 14b show the code and the CFG of the function after
correcting the errors highlighted by the previous step. Now, this function passes
the correctness check, and we can analyse it to see if it needs some discard
function. We show the system of equations derived from the CFG in Fig. 15a
and the system’s computation in Fig. 15b. In Fig. 14b, we show on each node
the sets (S, U) corresponding to the MFP solution computed in Fig. 15b. We
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Fig. 13. We show in (a) the system of equations derived from the CFG in Fig. 12b and
in (b) MFP solution of the system

now apply the algorithm in Algorithm 2. The variable u is not live after its last
definition in the edge (8, u, c = cx(u, c), 9), so we insert the discard there. The
variable a is in U [2], being in S[5] and not being live in 3, we insert discard(a)
in (2, NonZero( ), 3). The variable r is Unsafe in multiple nodes, in particular:

– r ∈ U [2] but is live in both 3 and 5, so I don’t need to do anything
– r ∈ U [5] and being in S[6] and not being live in 7, we insert discard(r) in

(5, Zero(measure(a)), 7).

Similarly, z is in U [2] and live in the successors, so it does not need to be dis-
carded, whereas it is in U [5] and is in S[7] and not live in 6, we insert discard(z)
in (5, NonZero(measure(a)), 6). The procedure employed in this example suc-
cessfully resolved the implicit discarding, which would have resulted in the type
system rejecting the program. Finally, we present the output programs with the
discard insertions in Fig. 16. We note that by using a type-based approach, the
type checker rejects the program in Fig. 14a unless the programmer enters all
the discard functions shown in Fig. 16.

8 Related Works

Safe Discarding and Uncomputation. Most of the literature has focused on syn-
thesising uncomputation and optimising the efficiency of the resulting procedure
instead of detecting which variables or qubits need to be uncomputed (i.e. dis-
carded). Square [11] and staq [3] utilize the uncomputation to reduce the number
of ancilla qubits. To manage ancillae Quipper [14] provides a function to convert
classical Haskell programs in the quantum circuits automatically and, during
this process, introduces the uncomputation. Other works like REVS [31,32],
Amy Matthew et al. work [5], ReQWIRE [38], Paris A. et al. works [29,30],
Q# [42] and Silq [6] provide functions that synthesise the quantum circuit for
uncomputation. Still, the synthesis is limited to circuits representing a classical
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Fig. 14. The correct version of function f in Fig. 12

function (Qfree circuit.)4. In contrast, ReQWIRE [38] only verifies the user-
defined uncomputation. Silq [6] and Qunity [43] provide automatic uncomputa-
tion but only for backend variables and do not consider user-defined variables.
Finally, Qrisp [39,40] introduces automatic uncomputation in functions which
are marked with a @auto uncompute decorator and provides manual uncompu-
tation via an uncompute function. However, Qrisps is at a slightly higher level
than a circuit language with an abstraction provided by a QuantumVariables
class (with various subclasses), which still represents a set of qubits and works
in a positional way (e.g. q = QuantumVariable(1); x(q)).

Program Safety. Most of the quantum languages based on variables like Silq
[6] and QWIRE [33] use linear typing to prevent copy and implicit discarding.
Quipper does not use a linear type system and is prone to error. Instead, Quipper
typed evolution, Proto-Quipper [13], uses a linear type system. We note that Silq
provides more sophisticated solutions introducing an annotation (cost) that
permits not to consume some variables and use it multiple times (implementing
a sort of copy using CNOT gate).

Abstract Interpretation. Feng et al. [12] explore the application of abstract inter-
pretation [9] in the context of quantum programs. Perdrix’s [35,36] and Honda’s
[17] entanglement analyses use abstract semantics based on data flow rather
than circuits. Finally, using the formalism of Abstract Interpretation, Yu et al.
[46] propose an abstraction of quantum domains based on the quantum circuits
model of quantum computation.

4 Functions that contain only classical gates, such as the NOT and the CNOT gates.
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Fig. 15. Analysis of the program in Fig. 14

Fig. 16. The function in Fig. 14 after the discard insertion

Static Analysis. Static analysis has been applied to quantum optimisation. Some
works use static analysis on Intermediate Representation (IR) based on the
Static-Single-Assignment (SSA). QIRO [18] introduces an MLIR dialect to rep-
resent data flow with quantum computation and use static analysis techniques to
optimise the resulting circuit. QSSA [34] introduces an analysis to verify that the
IR based on SSA qubits are used at most once. However, since their IR is based
on SSA, their analysis is less flexible than our approach (e.g. writing x = g(x) is
not allowed). The isQ compiler [15,16] introduces optimisations applying static
analysis on their IR in the compiling pipeline. Amy et al. [2,4] use static analysis
for phase folding optimisation (i.e. merging phase gates) and integrating clas-
sical data flow into a circuit language. Chen et al. [8] adapt classical constant
propagation techniques to optimise quantum circuits. Kaul et al. [21] extend
Code Property Graphs [45] to represent quantum circuits. Additionally, Javadi-
Abhari et al. [19] introduce a compiler, ScaffCC, which includes various analyses
such as entanglement, timing, resource analysis, and instruction reordering on
a modified version of QASM [10]. QChecker [47] and LintQ [28] utilise static
techniques to identify potential bugs such as resource allocation problems or
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incorrect measurements. QChecker operates as a static analysis tool, leveraging
AST information on Qiskit code. LintQ also considers Python code with Qiskit
and incorporates control flow modelling. All these approaches focus on quantum
circuits or IR, in contrast with our work, which operates at the highest level of
the stack.

9 Conclusion

We have introduced an analysis of uncomputation for high-level quantum pro-
gramming languages. This analysis is intended to facilitate programming tasks in
such languages by reducing the errors generated during compilation and relieving
the programmer of low-level tasks.

As we have shown in Fig. 10, our approach is based on two separate analyses
in sequence, with the aim of overcoming some limitations of the type systems-
based approach. The first analysis ensures that the variables are used at most
once. After that, a second analysis additionally tells the compilers the points of
the program where a variable should be discarded (uncomputed), thus unbur-
dening the programmer from this task. The replacement of the type system with
a static analysis adds flexibility in two ways: it is language-independent, and it
can be integrated with other analyses to potentially identify infeasible paths,
thus increasing precision. In particular, we can use well-known classical analy-
ses, such as interval analysis and constant propagation, to obtain more precise
classical control flows. Additionally, we could consider supplementary quantum
analyses such as entanglement analysis to avoid unnecessary uncomputation.
Various approaches have been proposed for such an analysis, e.g. [17,35,36] and
[19], which we believe can be further improved for our purposes.

Our analyses can be easily adapted to any language using a linear type sys-
tem or even to improve languages that do not use it, such as Quipper [14].
Furthermore, languages like Silq [6], which rely on annotations to determine if a
variable is consumed, can also be analysed with minimal modifications. Our anal-
ysis enables the definition of commands that do not consume resources while still
identifying variables for uncomputation, thanks to the modified liveness informa-
tion. This versatility allows for a broader applicability across various quantum
programming languages.

As a future work, it would be interesting to integrate the analysis into the
Guppy compiler. This would allow the definition of a new version of Guppy
with a lighter type checker, making the language easier to use. This integration
should be straightforward since we have implemented our analyses in Python,
which is the language of Guppy’s compiler. Finally, our analysis could be used to
detect unused resources in classical languages such as Rust [24], where a notion
of resource consumption is used to handle pointers.

Funding. This work was partially supported by “INdAM - GNCS Project”, code
CUP E53C22001930001, and partially supported by the project SERICS (PE00000014)
under the MUR National Recovery and Resilience Plan funded by the European Union
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