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Abstract. Managing quantum variables in quantum programs presents 
specific challenges due to the possible occurrence of entanglement, the  
quantum mechanical phenomenon for which two variables can reach 
a state where they cannot be separated into two distinct individual 
states. Such a phenomenon may lead to critical issues due to unintended 
measurements, which may alter the outcome of computations involv-
ing entangled variables. To address this problem, we propose a static 
analysis based on the abstract interpretation framework to soundly and 
automatically detect entanglement occurring in quantum programs. By 
constructing an abstract domain for the entanglement property, our anal-
ysis identifies cases where side effects from quantum operations may pro-
duce unwanted entanglement, thus reducing the possibility of unintended 
computational side effects. 

1 Introduction 

Quantum programming languages play an important role in quantum software 
development and are essential for effectively using a quantum computer for 
problem-solving [ 13,17]. Quantum programming language design and imple-
mentation provide crucial support to the rapid technological progress driven by 
the efforts of a number of companies striving to build large-scale quantum com-
puters. The nature of quantum computation introduces specific challenges when 
working with these languages [ 3]. One such challenge comes from the fact that, 
unlike classical variables, quantum variables represent information encoded in 
quantum states, i.e., vectors within a Hilbert space; this inevitably implies the 
need for specific approaches, different from the classical case, for their abstrac-
tion. 

Quantum computation is characterised by two fundamental principles: super-
position and entanglement. Unlike classical systems, where a state exists in a 
single, definite configuration, a quantum state can simultaneously exist in a 
superposition of multiple classical states. Entanglement occurs when some par-
ticles become so strongly correlated through a computation that they form an 
‘inseparable’ state, i.e., a state where they are no longer identifiable in their 
individual states. For program variables, this means that every time we act on 
a variable . q, we also alter the state of the other variables entangled with . q. 
Entanglement is crucial for many applications such as quantum communication 
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protocols (e.g. quantum teleportation [ 20, Chapter 5]), but can be problem-
atic in quantum programming, particularly when combined with the principle of 
implicit measurement [ 22, Section 4.4]. Therefore, analysing and tracking entan-
glement is essential for effectively reasoning about quantum programs. A par-
ticularly important task is identifying sets of entangled variables, namely sets 
of variables, such that whenever we operate on one variable, we may alter other 
variables in the same set. Crucial for this task is to identify which variables are 
in a quantum state and which are not. 

In this work, we introduce a new abstract domain for entanglement, which 
refines the abstract domain introduced in [ 2] by incorporating additional labels 
that abstract the quantum states of variables. These labels allow us to define 
a static analysis, which is able to identify entangled variables and approximate 
the variable’s state. Our static analysis not only determines the sets of entangled 
variables but also distinguishes a particular relation, which we call direct insepa-
rability, between entangled variables capturing the case of entangled states of the 
form .α |00 . . . 0〉 + β |11 . . . 1〉. These states called GHZ from the names of their 
inventors 1, are particularly interesting because they can be ‘disentangled’ in a 
very easy way. Our work improves the accuracy of existing methods that use a 
similar but less refined domain, such as the approach in [ 27], while avoiding the 
computational challenges associated with more precise abstract domains that 
grow exponentially with the number of qubits [ 18]. Additionally, our analysis is 
flexible enough to be applied to all imperative quantum languages (e.g. Quip-
per [ 15], QWire [ 24], Qiskit [ 1], qrisp [ 31] and Guppy [ 28]) rather than being 
limited to specific quantum circuits as in [ 29,30]. 

In the following sections, we will first provide an overview of the essential 
background of quantum computation (Sect. 2) and introduce the programming 
language used to define our analysis (Sect. 3). We then refine the properties 
introduced in our previous work [ 2] (Sect. 4) and define a new abstract domain 
(Sect. 5). In Sect. 6, we present the abstract semantics, and in Sect. 7, we show 
how to compute the analysis on a control flow graph. Finally, Sect. 8 discusses 
related work and Sect. 9 concludes the paper with a summary of our findings 
and potential directions for future research. 

2 Quantum Computation 

This section briefly recalls the main aspects of quantum computation related to 
the entanglement phenomenon. In doing so, we will refer to the circuit model 
of computation. In a quantum circuit, wires represent quantum bits, or qubits, 
rather than bits. Thus, a qubit replaces the classical unit of information (the bit) 
in the quantum computation model, generalising the two only possible values . 0
and . 1 of a bit to any vector in a complex Hilbert space (the quantum system), 
with . 0 and . 1 as basis vector. The typical notation of such vectors (or states
1 Danny Greenberg, Mike Horne, and Anton Zeilinger experimentally created this 

three-particle entanglement showing that quantum mechanics is not compatible with 
Einstein’s theory of ‘hidden variables’. 
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of a qubit) is the Dirac ket notation, according to which .|0〉 = (1, 0)T and 
.|1〉 = (0, 1)T indicate the basis states . 0 and . 1 and, in general, . |ψ〉 = α |0〉 + β |1〉
denotes a linear combination or superposition state. The numbers . α and . β are 
complex numbers called probability amplitudes since, from them, we can infer 
the probability of the state resulting in . 0 or . 1 after measuring the system. Such 
probabilities are obtained as .|α|2 and .|β|2, which explains why quantum states 
must be unitary, i.e., .|α|2 + |β|2 = 1 must hold. 

Implementing significant and powerful quantum algorithms requires perform-
ing quantum computation on circuits that are more complex than a single qubit 
operation and involve . n qubit states with .n > 1. A  . n qubit state corresponds to 
a unitary vector in the .2n-dimensional Hilbert space (.H2n), obtained by com-
posing by tensor product (. ⊗) the vector space of the single qubits, each living 
in a 2-dimensional complex Hilbert space (.H2) [  22, Chapter 2]. For instance, 
the space of two qubits is .H4 = H2 ⊗ H2 and a generic state .|ψ〉 in .H4 can be 
written as .|ψ〉 = α0 |00〉 + α1 |01〉 + α2 |10〉 + α3 |11〉 where all .αi are complex 
numbers. 

2.1 Measurement 

Quantum measurement is an operation that allows us to extract a classical result 
from a quantum superposition .|ψ〉. This operation transforms the quantum state 
into a classical one by breaking the quantum coherence (and so the quantum 
nature) of the state. Therefore, measurement is typically applied as the last 
operation in a quantum circuit to get the final (classical and probabilistic) result 
of the coherent (i.e., in superposition) evolution of the quantum system repre-
sented by the circuit. Formally, quantum measurement on the state space of 
the quantum system is represented using measurement operators .{Mm}, where 
.m corresponds to the possible outcomes of the measurement. If the system is 
in the quantum state .|ψ〉 before the measurement, the probability of obtaining 
outcome .m is given by .p(m) = ‖Mm |ψ〉 ‖2, where .‖ · ‖ is the vector norm 2, 
and the system state after the measurement is . Mm|ψ〉√

p(m)
. For instance, given one 

qubit, the measurement operators are .M0 = |0〉〈0| and .M1 = |1〉〈1|, correspond-
ing to the outcomes 0 and 1. If the state of the qubit before the measurement is 
.|ψ〉 = α |0〉 + β |1〉, the probability of measuring 0 is: .p(0) = ‖M0ψ‖2 = |α|2 and 
the probability of measuring 1 is .p(1) = ‖M1ψ‖2 = |β|2. After the measurement, 
if outcome 0 is observed, the state collapses to.M0|ψ〉

|α| = |0〉 while if outcome 1 is 
observed, the state collapses to .M1|ψ〉

|β| = |1〉.

2 We refer here to the Hilbert space vector norm defined as .‖ |ψ〉 ‖ =
√〈ψ〉, where  . 〈ψ|

is the conjugate transpose of .|ψ〉 and .〈x〉y is the inner product between vector . |x〉
and vector .|y〉. 
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2.2 Entanglement 

The behaviour of quantum circuits is determined by the laws of quantum 
mechanics and undergoes the effect of an important quantum phenomenon with 
no classical counterparts, namely entanglement. This can be intuitively described 
as an application of the superposition principle to a system composed of two or 
more subsystems. It occurs when statistically correlated measurement outcomes 
are observed as the effect of two subsequent quantum measurements, one on 
each subsystem. More concretely, the term entanglement describes a situation 
in which two particles, designated as . x and . y, which form a composite system, 
become strongly correlated. This occurs as a result of a computational process 
that generates a superposition of product states for both particles. This superpo-
sition implies that the state of the composite system cannot be described without 
considering the other particle’s state. Consequently, if measurements are made 
on an entangled state .ab + cd, where . a and . c are two possible states of . x and 
. b and . d are two possible states of . y, then if . x is found in state . a, . y must be in 
state . b; similarly if . x is found in state . c, . y must be in state . d. 

As an example, the state .1/√
2(|00〉 + |11〉) in the Hilbert space .H2 ⊗ H2 is 

entangled because it cannot be expressed as a tensor product of the individual 
states of the two-component qubits. In this state, if one qubit is measured and 
found to be in the state .|0〉, the other qubit will instantaneously collapse to 
the state .|0〉 as well, and similarly for the state .|1〉. In some cases, measuring a 
qubit of an entangled pair alters the other, keeping it in a quantum state. For 
instance, consider the entangled state .1/2(|00〉 + |01〉 + |10〉 − |11〉). If the first 
qubit is measured and found in the state .|0〉, the other qubit will instantaneously 
collapse to the state .1/√

2(|0〉 + |1〉) and, similarly, if the first qubit after the 
measurement collapses to .|1〉, then the other one will be in state .1/√

2(|0〉 − |1〉). 

2.3 Quantum Variables 

A quantum variable is the high-level abstraction of the state of a quantum reg-
ister. Therefore, its type is the dimension of the Hilbert space to which those 
states belong, namely .2n for a .n-qubit quantum register. Thus, the abstrac-
tion of a qubit is a quantum variable . q of type 2, whose states are vectors in 
a two-dimensional complex Hilbert space .Hq. Following [ 37], we construct the 
space of values for a set .Q = {qi} of quantum variables .qi as the Hilbert space 
.HQ =

⊗
i Hqi obtained by composing via tensor product the space of each vari-

able. Given a quantum program characterised by a set .Q of quantum variables, 
we say that the Hilbert space .HQ is the program space, and the semantics of 
the program can be described using vectors and operators in the space .HQ [ 37]. 

We write .|ψ〉qi
to indicate that . qi represents the state .|ψ〉 in .Hqi . For entan-

gled states, such for example .1/√
2(|01〉 + |10〉), we write .(1/√

2(|01〉 + |10〉))p,q to 
indicate that . p and . q represent, respectively, the first and the second variable of 
the entangled pair. In this case, the state is an inseparable vector in the space 
.Hp ⊗Hq. We use the same notation to represent linear operators on the program 
Hilbert space. Given an operator . U in the Hilbert space .HQ and a set of variables
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.v ⊆ Q, we write .Uv to indicate the operator acts as .U on the variables in . v and 
acts as the identity on the other variables of . Q. For instance, .Hq is the unitary 
operator in .HQ that acts as the Hadamard gate(. H) on  . q and as the identity on 
the other variables. In the same way, .CXp,q is the operator corresponding to the 
control-not operators on . p and . q and the identity on the other variables. 

Fig. 1. Graphical representation of the language .c constructs. The CFG (a), where 
.l ∈ label, represents a single statement, the CFG (b) corresponds to the sequential 
composition, (c) represents the branching .c ⊕ c and (d) corresponds to the iteration 
.c∗. 

3 Control Flow Graph Language 

Static analysis is usually performed using the control flow graph (CFG) repre-
sentation of programs [ 32]. We follow [ 3, 6,23] and consider the CFG language 
defined by the syntax: 

. c ::= label
∣
∣ c; c

∣
∣ c ⊕ c

∣
∣ c∗, (1) 

where the term .c; c represents sequential composition; the term .c ⊕ c repre-
sents branching; the term .c∗ is the Kleene closure of the . n time composition 
.cn = c; . . . c;, where .n ∈ N, and the term .label represents the labels that corre-
spond to the statements of the analysed language. The CFG associated with a 
program is a graph with a start node corresponding to the program entry point, 
an end node corresponding to the exit point, and all other nodes corresponding 
to intermediate points in the execution of the program; each edge of the graph 
has a label that represents the change produced by the execution of an instruc-
tion of the language that is analysed. Hence, .label defines the language of the 
programs we are analysing, while the other elements in the syntactic category 
. c describe how we compose the edges of the program CFG depending on their 
labels as displayed in Fig. 1. If  .N is the set of program points, the CFG will 
be defined as sets of edges, with a label .l ∈ label, between nodes in . N , i.e., as 
subsets of .N × label × N . In this way, we can define a new analysis simply by 
providing abstract semantics for the instructions defining .label. 

We will define our analysis by referring to a minimal quantum language 
characterised by quantum statements on quantum variables with a control flow 
based on measurement. This means that the branching in the CFG is guided by
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the probabilistic result of a quantum measurement. Given a finite set of quantum 
variables .Q and .q, p ∈ Q we define the language .label as follows: 

. label ::= NonZero(q)
∣
∣ Zero(q)

∣
∣ skip

∣
∣ h(q)

∣
∣ t(q)

∣
∣ cx(p, q), (2) 

where .Zero(q) (.NonZero(q)) indicates that the measurement of . q returns 0 (1); 
the statements, . h, . t, and .cx indicate, respectively, the Hadamard gate, the . T gate 
and the control-not gate [ 22, Chapter 4]. Considering only these three quantum 
operations is not a limitation because they allow us to cover all possible quantum 
computations [ 5]. Moreover, without loss of generality, we can assume that every 
variable .qi ∈ Q corresponds to a 1-qubit register initialised to the state .|0〉. In our  
language, we can write both while and if then else statements [ 35, Chapter 
14, Exercise 14.4]: 

. 
if (q) then c1 else c2 ≡ (NonZero(q); c1) ⊕ (Zero(q); c2)

while (q) do c ≡ (NonZero(q); c)∗; Zero(q)

Thus, our language is equivalent to the quantum while language that is used 
in [ 25,36,37], and to the one that is used to define the other two entanglement 
analyses based on abstract semantics [ 18,27]. 

3.1 Collecting Semantics 

Let .Q = {qi}n be the set of variables, we call .HQ =
⊗n

i Hqi the .n-qubit Hilbert 
space, i.e., a space of dimension . 2n. Let .VQ be the set of all vectors .|ψ〉 ∈ HQ, we  
define the collecting semantics as a function .� · � : ℘(VQ) → ℘(VQ). First, given 
a set  .v ∈ ℘(VQ), we define the collecting semantics for each instruction of the 
language .label as follows: 

. 

� skip �v = v

� h(q) �v =
{

Hq |ψ〉 ∣
∣ |ψ〉 ∈ v

}

� t(q) �v =
{

Tq |ψ〉 ∣
∣ |ψ〉 ∈ v

}

� cx(p, q) �v =
{

CXp,q |ψ〉 ∣
∣ |ψ〉 ∈ v

}

� NonZero(q) �v =
{

M1q |ψ〉
‖M1q |ψ〉 ‖

∣
∣‖M1q |ψ〉 ‖2 > 0, |ψ〉 ∈ v

}

� Zero(q) �v =
{

M0q |ψ〉
‖M0q |ψ〉 ‖

∣
∣‖M0q |ψ〉 ‖2 > 0, |ψ〉 ∈ v

}

where .Hq and .Tq are the unitary operators in .HQ that correspond to the gate 
Hadamard and T applied to . q, .CXp,q is the unitary that corresponds to control-
not on . p and . q (where . p is the controller and . q the target) and the identity on the 
other variables while .NonZero(q) and .Zero(q) corresponds to measurement 1 and 
0 on  . q. For instance .� NonZero(q) �{|1〉q} = {|1〉q} while .� Zero(q) �{|1〉q} = ∅.



56 N. Assolini et al.

Finally, we can define the collecting semantics for the whole language: 

.

� c1; c2 �v =� c2 �(� c1 �v)
� c1 ⊕ c2 �v =� c1 �v ∪ � c2 �v

� c∗ �v =
⋃

n

� cn �v.
(3) 

With this collecting semantics, we only want to represent the set of all states 
that a program can return as a result. For this reason, when we consider the 
measurement, we follow a conservative approach by collecting all possible results, 
ignoring the probability with which these results occur. 

4 Characterising Entanglement 

In this section, we recall the properties of separability and of direct insepara-
bility 3 [ 2], and the abstract domain proposed to represent them. Here, the idea 
is to refine this domain to make it suitable for performing a static analysis for 
soundly detecting entanglement. To define an abstract domain which is able to 
capture the entanglement property of quantum variables, we introduce a char-
acterisation of this property by means of an equivalence relation. For bipartite 
systems (e.g. two qubits), entanglement and separability are dual concepts. In 
fact, a composite quantum state .|ψ〉q1,q2

∈ Hq1 ⊗ Hq2 is separable if and only 
if it can be written as a tensor product .|ψ〉q1,q2

= |φq1〉 ⊗ |φq2〉 for some states 
.|φq1〉 ∈ Hq1 and .|φq2〉 ∈ Hq2 . A state .|ψ〉q1,q2

is entangled if and only if it is 
not separable. However, the scenario becomes more complex when considering 
systems consisting of three or more subsystems. Entanglement in such systems 
corresponds to inseparability across the entire system, but various degrees of 
entanglement can occur within subsystems. 

Some metrics have been introduced to analyse the entanglement of these sys-
tems, such as entanglement monotones and entanglement measures [ 33], which 
quantify entanglement between subsystems. In [ 10], the entanglement of two 
subsystems . S1, .S2 is measured in terms of an entanglement monotone function 
.E|ψ〉(S1, S2), such that .E|ψ〉(S1, S2) = 0 if and only if .S1 and .S1 taken in isolation 
are not entangled in the global system state .|ψ〉. For instance, the 3-qubits state 
.|ψ〉q1,q2,q3

= 1/2(|000〉 + |001〉 + |011〉 + |111〉)q1,q2,q3 is fully inseparable since it 
cannot be decomposed via the tensor product (.|ψ〉 = |φ1〉⊗|φ2〉 for any .|φ1〉 and 
.|φ2〉). In fact, the entanglement monotone .E|ψ〉(qi, {qj , qk}) always differs from 
zero for all .i, j, k ∈ {1, 2, 3}. However, if we measure the entanglement between 
pairs of qubits, we have .E|ψ〉(q1, q2) > 0, .E|ψ〉(q2, q3) > 0 but .E|ψ〉(q1, q3) = 0, 
that is the qubits .q1 and .q3 taken in isolation are a separable subsystem. This 
example shows that the entanglement is not transitive, i.e., the fact that .q1 is 
entangled with .q2 and .q2 with .q3 does not imply that .q1 is entangled with . q3. 

In our analysis, we are interested in understanding when a set of variables is 
fully inseparable or whether the variables are separable in some way. When two
3 In [ 2] we call the direct inseparability property as being at the same level. 
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variables are separable (and thus not entangled), we know we can measure one 
without altering the other. Thus, in our analysis, we speak about separability 
and we consider its dual notion inseparability instead of entanglement. Let us 
formally define the separability of two variables in a multi-variable state. 

Definition 1 (Separability). Let .Q be the set of variables in a state .|ψ〉Q. 
Two variables .q1, q2 ∈ Q are separable if the state .|ψ〉Q can be written as . |ψ〉Q =
|φ1〉Q1

⊗|φ2〉Q2
, where  .Q1, Q2 ⊂ Q, .q1 ∈ Q1 and .q2 ∈ Q2. Otherwise, we say that 

.q1, q2 are inseparable. Given a set .v ∈ ℘(VQ), two variables .q1, q2 are inseparable 
in . v if they are inseparable in at least one state .|ψ〉Q ∈ v. 

There exists a particular relation between inseparable variables. For instance, 
let us consider the state .|ψ〉a,b,c = (|000〉+ |110〉+ |001〉−|111〉)a,b,c, where . a, b, c
are inseparable. On an intuitive level, it can be seen that the three variables are 
not related in the same way. In fact, . a and . b are more closely related to each 
other than either . a with . c or . b with . c: if we measure  . a we obtain one of the two 
states: .(|00〉+ |01〉)b,c or .(|10〉− |11〉)b,c, where . b has collapsed to a base state (. 0
or . 1) in both states while . c is still in superposition. Instead, if we measure . c we 
obtain: .(|00〉 + |11〉)a,b or .(|00〉 − |11〉)a,b where . a and . b are in a entangled and 
superpose state. When two variables are related as . a and . b in this example, we 
say that they are directly inseparable. 

Definition 2 (Direct Inseparability). 
Given . a and .b .∈ .Q in a state .|ψ〉Q, we say that . a and . b are directly 

inseparable(d-inseparable) if, by measuring one of them, the other also collapses 
to a base state. Two variables .q1, q2 ∈ Q are d-inseparable in .v ∈ ℘(VQ) if they 
are d-inseparable in all states .|ψ〉Q ∈ v. 

Being d-inseparable is a useful property when reasoning about entanglement. In 
fact, if we apply a controlled not (.CX) between two d-inseparable variables, we 
will always ‘disentangle’ the target variable. For instance, if we apply .CXa,b, 
where . a is the controller and . b is the target, the state .|ψ〉a,b,c defined above, we 
obtain: 

.

CXa,b(|ψ〉a,b,c) = (|000〉 + |100〉 + (|001〉 − |101〉)a,b,c =

= ((|0〉 + |1〉) |0〉 + (|0〉 − |1〉) |1〉)a,c ⊗ |0〉b .
(4) 

In other words, we have separated . b from the other variables. Instead if we apply 
.CXa,c we obtain: 

.CXa,c(|ψ〉a,b,c) = (|000〉 + |111〉 + |001〉 − |110〉)a,b,c, (5) 

and we do not ‘disentangle’ . a since . c and . a are not d-inseparable. 
As shown in [ 2], inseparability and d-inseparability are equivalence relations.
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5 An Abstract Domain for Entanglement 

The generation of entanglement depends on the values of the variables, which, 
therefore, must be taken into account when defining the elements of our abstract 
domain. Thus, we define an abstract state as consisting of two parts: the first 
is based on sets of variables representing inseparability and d-inseparability. In 
contrast, the second consists of a function that associates each variable with a 
specific label indicating the variable’s state. 

The Inseparability and D-Inseparability Domain. Inseparability and d-
inseparability are both equivalence relations; thus, given a set of variables . Q, 
we can represent both properties on .Q by partitions of . Q. For instance, con-
sider the state .|ψ〉a,b,c,d = ((|00〉 + |11〉) |0〉 + (|00〉 − |11〉) |1〉)a,b,c ⊗ |1〉d. We  
can build the partition .({a, b, c}{d}) that represents the inseparable variables in 
.|ψ〉a,b,c,d and another partition .({a, b}, {c}, {d}) that identifies the d-inseparable 
variables. Since being d-inseparable implies being inseparable, the d-inseparable 
partition is always included in the inseparable one. We encode this informa-
tion in our abstract states by representing them as a list of numbered sets (e.g., 
.[({a, b}, 0), ({c}, 0), ({d}, 1)]), where the smaller partition (.({a, b}, {c}, {d})) rep-
resents which variables are d-inseparable, while by merging sets with the same 
number, we obtain the partition representing inseparability (.({a, b, c}{d})). 

Definition 3. Given a set of quantum variables . Q, we define the abstract state 
.EQ as the set of tuples 

. EQ =
{

(e, k)
∣
∣ e ∈ ℘(Q) and k ∈ N

}
,

where .∀ (e, k), (e′, k′) ∈ EQ, e ∩ e′ = ∅ and .
⋃

(e,k)∈EQ e = Q. In other words, the 
sets . e form a partition of . Q. 

We call .EQ ⊂ ℘(℘(Q) × N) the abstract domain of all possible .EQ. 
To better refer to the abstract state, we introduce the following notation. 

Given an abstract state .EQ, we write .Ek, using a capital letter, to refer to the 
set .Ek =

⋃
(e,k)∈EQ e, i.e., the union of all . e with the same index . k. For instance, 

if .E{a,b,c,d,e} = [({a, b}, 0), ({c}, 0), ({d, e}, 1)], .E0 = {a, b, c} while .E1 = {d, e}. 
Using this notation, we introduce a partial order in .EQ. 

Definition 4 (.EQ,�E). Given .EQ
1 , EQ

2 ∈ E
Q. .EQ

1 �E EQ
2 iff . ∀(e2, k) ∈ EQ

2 , 
.∃ (e1, k′) ∈ EQ

1 such that .e2 ⊆ e1 and .∀Ek ∈ EQ
1 , .∃Eh ∈ EQ

2 such that .Ek ⊆ Eh. 

We write .∨E and .∧E to refer to the least upper bound (lub) and the great-
est lower bound (glb) induced by .�E, and the resulting domain is a complete 
lattice. For instance, . [({a, b, c}, 0), ({d}, 1)] �E [({a, b}, 0), ({c}, 0), ({d}, 1)] �E

[({a}, 0), ({b}, 0), ({c}, 0), ({d}, 1)] �E [({a}, 0), ({b}, 0), ({c}, 0), ({d}, 0)], and  
.[({a, b}, 0), ({c}, 1)] ∨E [({a}, 0), ({b, c}, 1)] = [({a}, 0), ({b}, 0), ({c}, 0)]. 

To ensure soundness, we overestimate the non-separabilities and determine 
which variables are potentially inseparable. On the other hand, since being d-
inseparable implies special effects in relation to control-not and measurement,



A Static Analysis of Entanglement 59

we underestimate the d-inseparability property to make sure we do not introduce 
errors in the abstract semantics. 

We have defined an abstract domain that allows us to represent inseparability 
and d-inseparability. However, we need a final ingredient to define the abstract 
semantics: some elements abstracting the variables’ state. 

Labels: We introduce some labels that represent some specific states that are 
relevant to entanglement abstraction. The .CX gate does not introduce entan-
glement if the controller is in a classical state (.|0〉 or .|1〉) or the target is in a 
uniform superposition .(1/√

2 |0〉±|1〉). To track these two states, we introduce two 
labels that represent two sets of states: .Z = {φ |b〉} (the set of classical values), 
and .X = {φ(1/√

2 |b〉 ± 1/
√
2
∣
∣b

〉
)} (the set of values in uniform superposition), 

where . φ represents a global phase, . b is a binary string and . b is the negation of . b
(e.g. if .b = 0 then .b = 1 and if .b = 010 then .b = 101). Moreover, we introduce 
three other labels: 

. 
P = {φ(1/

√
2 |b〉 ± i + 1/

√
2
∣
∣b

〉
)} Y = {φ(1/

√
2 |b〉 ± i/

√
2
∣
∣b

〉
)}

R = {φ(1/
√
2 |b〉 ± i − 1/

√
2
∣
∣b

〉
)}.

We need these labels to represent the semantics of the gate . t. In particular, 
.tX = P , .tP = Y , .tY = R and .tR = X while .tZ = Z. Then, we add a final 
label to represent states that are not classical, i.e., those that are definitely in 
superposition: .S = {φ(α |b〉±β

∣
∣b

〉
) | |α|2 + |β|2 = 1 and α �= 0∧β �= 0}. Finally, 

we define .⊥L as the empty set and .�L as the set of all possible vectors. We 
can order these labels by inclusion, constructing a lattice .(L,�L), represented 
in Fig. 2. 

Fig. 2. Lattice . (L, �L)

5.1 Put All Together: The Abstract Domain 

Now, we include the labels in the definition of the abstract domain. When vari-
ables are inseparable, their state cannot be described as a combination of indi-
vidual states. Recall that, in an abstract state .EQ, a set of inseparable variables
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is the union of all sets . e with the same index . k. We introduce a labelling function 
to associate each set of inseparable variables with a label. Formally, we define 
the labelling function as .λ : N → L, and we call .Λ = N × L the domain of the 
labelling function. Consequently, we reformulate the definition of the abstract 
state, including the labelling function, as follows. 

Definition 5. Given a set of quantum variables . Q, let  be  .EQ ∈ E
Q and .λ ∈ Λ, 

we define an abstract state as the pair .(EQ, λ). 

We define .AQ = E
Q × Λ as the abstract domains. For instance, let us consider 

a set of variables .Q = {a, b, c, d} in the state 

. |ψ〉Q = (1/2(|0〉 + |1〉) |0〉 + i/2(|0〉 − |1〉) |1〉)a,b ⊗ 1/
√
2(|10〉 + |01〉)c,d.

First, we construct the partition corresponding to the sets of inseparable vari-
ables, i.e., the sets .{a, b} and .{c, d}. Once these two sets have been iden-
tified, we construct the abstract state by identifying which variables are d-
inseparable, obtaining the abstract state: .[({a}, 0)({b}, 0)({d, c}, 1)]. The last 
step is to label the sets of inseparable variables. In particular, given a set of 
variables in a state .|φ〉, we choose the smallest label . L such that .|φ〉 ∈ L. We  
see that the state of the variables .a, b is contained only in .�L while the state 
of .c, d is contained in .X,S,�L, consequently the final state will be equal to: 
.(EQ, λ) = ([({a}, 0)({b}, 0)({c, d}, 1)], {0 : �L, 1 : X}. 

At this point, if we want to compute the set of concrete states represented 
by an abstract state, starting from the obtain .(EQ, λ), we consider .EQ. In this 
case, we know that there are two sets .{a, b}, .{c, d} of inseparable variables, so the 
abstract state corresponds to a set of concrete states in the form .|φ1〉a,b ⊗|φ2〉c,d. 
Then, we can get more precise information about .|φ1〉 and .|φ2〉 by checking which 
variables are d-inseparable, that is, . c and . d. In particular, we know that the 
concrete states can be expressed by the set .{|Ψ〉 | |Ψ〉 = (|φ1〉a,b ⊗ (|b〉+

∣
∣b

〉
)c,d}. 

Now, we complete the concretisation by checking the information contained in 
the labels. By the labels we know that .a, b can be in any quantum state while . c, d
are in the form of .1/√

2(|b〉+
∣
∣b

〉
)c,d. Finally, by intersecting this information with 

the previous one, we obtain the set: .{|ψ〉 | |ψ〉 = (|φ1〉a,b ⊗ 1/
√
2(α |b〉+β

∣
∣b

〉
)c,d}, 

which represents the concretisation .γ((EQ, λ)) of .(EQ, λ) and, of course, . |ψ〉 ∈
γ((EQ, λ)). Note that labels represent the state of a single variable or a state of 
. n d-inseparable variables. So, if a set of inseparable variables is not labelled as 
.�L, .Z or .⊥L, it means that it corresponds either to a single variable or to all 
d-inseparable variables. 

Based on the partial order .�E defined in Definition 4, we can define an 
ordering in .AQ. 

Definition 6 (.AQ,�). Given .(EQ
1 , λ1), (EQ

2 , λ2) ∈ A
Q, .(EQ

1 , λ1) � (EQ
2 , λ2) if 

and only if 

.EQ
1 �E EQ

2 ∧ ∀Eh ∈ E2,

{
λ(k) �L λ(h) if ∃Ek ∈ E1such that Eh = Ek

λ(h) = �L otherwise
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We call . � and . � the lub and glb induced by the order. Since the lattices . (EQ,�E)
and .(L,�L) are finite and defined by inclusion operators, they are complete 
lattices. Thereby, also the lattice .((EQ, λ),�) is complete. 

For instance, consider two abstract states .(EQ
1 , λ1) = ([({p, q}, 0)], 0 : X) and 

.(EQ
2 , λ2) = ([({p, q}, 0)], 0 : Y ); the lub between them is . (EQ

3 , λ3)= ([({p, q}, 0)],
.0 : S). In this case, since .p, q are d-inseparable in both states, they are also 
in the lub, and we label the partition by the lub between the labels (we 
are in the ‘if’ case of the Definition 6). In fact, .(EQ

1 , λ1) represent the set 
of states .{|ψ〉 |φ(1/√

2 |b〉 ± 1/
√
2
∣
∣b

〉
)} and .(EQ

2 , λ2) represent the set of states 
.{|ψ〉 |φ(1/√

2 |b〉 .±i/
√
2
∣
∣b

〉
)}, where .b ∈ {00, 01, 10, 11}, and the abstraction of the 

union of these two sets is .(EQ
3 , λ3). 

On the other hand, if we consider the states .(EQ
4 , λ4) = ([({p, q}, 0), ({t}, 1)], 

.{0 : X, 1 : X}) and .(EQ
5 , λ5) = ([({p}, 0), ({q, t}, 1)], {0 : X, 1 : X}, the lub 

between them is .(EQ
6 , λ6) = .([({p}, 0),.({q}, 0),.({t}, 0)], {0 : �L}. In fact, . (EQ

4 , λ4)
represent the set of states . {|ψ〉 |φ(1/√

2 |b〉 ± 1/
√
2
∣
∣b

〉
)p,q ⊗ 1/

√
2 |0〉 ± 1/

√
2 |1〉)t}

and .(EQ
5 , λ5) represent the set of states . {|ψ〉 |φ(1/√

2 |0〉 ± 1/
√
2 |1〉)p ⊗ 1/

√
2 |b〉 ±

1/
√
2
∣
∣b

〉
)q,t}. If we join these sets, we obtain a set of states where .p, q, t are 

inseparable. However, . p and . q are only d-inseparable in some states, while . q
and . t are d-inseparable in others. So, in general, we can only say that .p, q, t are 
inseparable and not d-inseparable, and the only possible label for these states is 
.�L. 

Concretisation Function. Now, we can introduce some formalism to define 
the concretisation function .γ : A → ℘(VQ). 

Definition 7. Let . Q be a set of variables, and .π ⊂ ℘(Q) a partition of . Q. Given 
a state .|ψ〉Q, we say that the variables in . Q are .π-separable if .|ψ〉Q =

⊗
p∈π |φ〉p, 

i.e., their joint state can be decomposed into a product of states across a partition 
. π of the variables. 

For instance, given a state .|ψ〉q1,q2,q3
and a partition .π = {{q1, q2}{q3}}, . q1, q2, q3

are .π-separable if and only if we can write .|ψ〉q1,q2,q3
as .|φ1〉q1,q2

⊗ |φ2〉q3
. 

Given an abstract state .(EQ, λ), we write .{Ek} to indicate the sets that are 
obtained by .EQ = {(e, k)} joining the sets . e with the same . k. Recall that . {Ek}
is a partition that represents the sets of inseparable variables. 

Definition 8. Given a set of variables . Q, we say that .|ψ〉Q � (EQ, λ) (that is, 
.|ψ〉Q is abstracted by .(EQ, λ)) if and  only  if  

– .|ψ〉Q is .{Ek}-separable; 
– .∀(e, k) ∈ EQ, .qi, qj ∈ e .⇒ .qj and .qi are d-inseparable in .|ψ〉Q; 
– given .|ψ〉Q =

⊗
k |ψ〉Ek

, for all . k, .|ψ〉Ek
∈ λ(k). 

In other words, we say that an abstract state .EQ abstracts a concrete state if 
and only if the abstract state over-approximates the set of inseparable variables,
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under-approximates the d-inseparability, and all separable sub-states that com-
pose the state are represented by labels. Now we have all the elements to define 
the concretisation function .γ : A → ℘(VQ): 

. γ(EQ, λ) = {|ψ〉Q | |ψ〉Q � (EQ, λ)}.

Theorem 1. Given a set of abstract states .{(EQ
j , λj)}j, let  .I =

⋂
j γ(EQ

j , λj), . ∃
an abstract state .(EQ

I , λI) such that .γ((EQ
I , λI)) = I. 

Proof (Sketch). .γ(EQ
j , λj) is the set of state in .HQ that are abstracted by 

.(EQ
j , λj), so  . I is the set of states that are abstracted by all .(EQ

j , λj). Conse-
quently, we if .(EQ

I , λI) =
�

j(EQ
j , λj) then .γ((EQ

I , λI)) = I. 

Theorem 1 proves that . A is isomorphic to a Moore family of .℘(VQ). This means 
that exist a function .αl : ℘(VQ) → A such that .〈A, αl, γl, ℘(VQ)〉 forms a Galois 
Insertion [ 7, 8,34]. 

6 An Abstract Semantics 

In this section, we define the abstract semantics for our analysis. We first 
need to introduce some additional notation to better represent the operations 
on abstract states. Let us consider a generic abstract state .(EQ, λ), where 
.EQ = {(ei, ki)}i. We write .EQ(q) to refer to the pair .(e, k) ∈ EQ such that .q ∈ e, 
while we have .EQ{q} to refer to set .Ek ∈ EQ that contains . q. For instance, 
if .E1 = [({q}, 0), ({t}, 0), ({r}, 1)] then .E1(q) = ({q}, 0) and .E1{q} = {q, t}. 
We write .EQ[q1 + q2] to mark .q1 and .q2 inseparable in .EQ (e.g., .E1[r + q] is 
equal to .[({q}, 1), ({t}, 1), ({r}, 1)]). Note that if we mark . q and . r as insepara-
ble, this also affects . t due to the transitivity of the inseparability. . EQ[q1 � q2]
means that we marked .q1 and .q2 as d-inseparable, so given .E1 from above, 
.E1[q � t] = [({q, t}, 0), ({r}, 1)]. Note that .E [q1 � q2] implies applying also 
.E [q1 + q2]. .EQ[∼ q] denotes the removal of . q from the set of variables d-
inseparable from itself, and .EQ[¬q] denotes that we make . q separable from the 
rest of the variables. For instance, given .E2 = [({q, r}, 0), ({t}, 0)], .E2[∼ q] is 
equal to .[({r}, 0), ({q}, 0), ({t}, 0)] and .E2[¬t] correspond to .[({q, r}, 0), ({t}, 1)]. 
Of course, .E2[¬q1] implies .E2[∼ q1]. Finally, to ease the use of the labelling 
function, given a variable . q, let  .EQ(q) = (e, k), we write .λ(q) to refer to .λ(k). 
Additionally, we write .λ[q ← L] to state that we change the label referred 
to the index . k associated with . q, setting it equal to . L. For instance, given 
.(Eq,p,t, λ) = ([({q}, 0)({p}, 0), ({t}, 1)], {0 : �L, 1 : X}), .λ(q) = λ(p) correspond 
to .λ(0) = �L, .λ(t) = X, since it corresponds to .λ(1), and  . (Eq,p,t, λ[q ← Y ])
is equal to .([({q}, 0)({p}, 0), ({t}, 1)], {0 : Y, 1 : X}). In general, when we speak 
about a label associated with a variable . q, we implicitly refer to the label asso-
ciated with the index associated with . q.
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Before defining the abstract semantics of the language, we define four abstract 
operations .H�

q , T
�
q , CX�

p,q,M
�
q : A

Q → A
Q, that correspond to the abstraction of 

the unitary operation .H,T,CX and the measurement respectively. 
For all the abstract operations it holds that if .(EQ, λ) = ⊥, then . G�

v(EQ, λ) =
(EQ, λ). If fact  .γ(⊥) = ∅ and .Gv∅ = ∅. 

. T gate .(T �
q ) This gate does not make a difference if we apply it to a single or a 

group of d-inseparable variables. Formally, 

. T �
q (EQ, λ) = (EQ, λ[q ← V ]),

where .V can be derived from the red arrows in Fig. 3. 

Hadamard Gate (.H�
q.) The Hadamard gate distinguishes whether . q is entangled 

with other variables. Formally, the abstract semantics is defined as follows: 

. H�
q(EQ, λ) =

{
(EQ, λ[q ← V ]) |EQ{q}| = 1,

(EQ(∼ q), λ[q ← �L]) otherwise.

In particular, if . q is separable from the other variables (i.e., .|EQ{q}| = 1), .V can 
be derived from the blue arrows in Fig. 3. If  . q is inseparable (i.e., .|EQ{q}| > 1), 
applying Hadamard to it produces a state that we can only label with .�L and the 
variable . q is no longer d-inseparable. For instance, given . |ψ〉p,q,t = (1/√

2(|000〉 +
|111〉)p,q,t, .p, q, t are d-inseparable and their state can be labelled as . X. Then, 
applying .Hq |ψ〉p,q,t = (|000〉 + |010〉 + |101〉 + |111〉)p,q,t, . q is not is no longer 
d-inseparable from .p, t, and the state is only labelable by .�L. 

Fig. 3. The red arrow indicates the semantics of the abstract operation .T �
q while the 

blue one indicates the semantics of the abstract operation .H�
q . 

Controlled-Not gate (.CX�
c,t.) The .CX gate can introduce or nullify entangle-

ment, so we need to consider different cases according to the state of . c and . t. 
Given an abstract state .(EQ, λ), we can define the abstract semantics as follows:
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– if .λ(c) = Z, i.e., the controller is in a base value, the .CX corresponds to a 
classical controlled not, so it does not introduce or nullify entanglement and 
it does not change labels, thus: 

. CX�
c,t(EQ, λ) = (EQ, λ);

– if . t is separable from other variables (i.e. .|EQ{t}| = 1) we check the state of 
. c and . t: 

. CX�
c,t(EQ, λ) =

⎧
⎪⎨

⎪⎩

(EQ, λ) if λ(t) = X,

(E [c � t], λ) if λ(c) �= �L ∧ λ(t) = Z,

((E [∼ t])[c + t], λ[t ← �L]) otherwise.

In particular, if the target is in uniform superposition, the .CX gate corre-
sponds to the identity. 

If the controller is surely in superposition (i.e. .λ(c) �= �L and .λ(c) �= Z) 
and the target is a classical value, the .CX gate makes . t d-inseparable 
from . c. Moreover, when we set . t d-inseparable from . c, . t automatically gets 
the label of . c. For instance, if we have three variables, .q, c, t in the state 
.|ψ1〉 = 1/

√
2(|00〉 + |11〉)q,c ⊗ |1〉t, applying .CXc,t |ψ1〉 we obtain . 1/√

2(|001〉 +
|110〉)q,c,t in which .q, c, t are d-inseparable. Then, given .Q = {q, c, t} and 
.(EQ

1 , λ1) = {({q, c}, 0), ({t}, 1)}, {0 : X, 1 : Z}) such that .|ψ1〉 ∈ γ(EQ
1 , λ1), 

.CX�
c,t(EQ

1 , λ1) = ({({q, c, t}, 0)}, {0 : X}) and .CXc,t |ψ1〉∈γ(CX�
c,t(EQ

1 , λ1)). 
Finally, if none of the above conditions is fulfilled, we need to approximate 
the relation between . c and . t. To maintain the soundness, we mark . c and . t as 
inseparable without setting . c and . t d-inseparable. Moreover, we mark . c and 
. t equal to .�L (recall that, since . t and . c are inseparable, they are related to 
the same . k, so writing .λ[t ← �L] or .λ[c ← �L] produce the same effects). 

– if . t is inseparable from other variables, we need to check if the .CX gate 
nullifies some entanglements: 

. CX�
c,t(EQ, λ) =

{
(E [¬t], λ[t ← Z]) EQ(c) = EQ(t)
(E [∼ t], λ[t ← �L]) otherwise

.

In particular, if . c and . t are d-inseparable (.EQ(c) = EQ(t)), we ‘disentan-
gle’ . t, as we see in Eq. 4, and, we set the disentangled variable separable 
from the rest, labelling it as . Z. Otherwise, we do not know the exact effect 
of the gate since, as we have shown in Eq. 5, the  .CX alters the entan-
gled state. Thus, to maintain soundness, we mark . t as not d-inseparable 
from the other variables and label it as .�L. For instance, given . (EQ

1 , λ1) =
([({a, b}, 0), ({c}, 0)], {0 : �L}), . CX�

a,b(EQ
1 , λ1) = ([({a}, 0), ({c}, 0), ({b}, 1)],

.{0 : �L, 1 : Z}) while .CX�
c,a(EQ

1 , λ1) = .([({a}, 0), .({c}, 0), ({b}, 0)],{0 : �L}). 
Given .|ψ〉a,b,c, .CXa,b |ψ〉a,b,c and .CXc,a |ψ〉a,b,c from Eq. 4 and Eq. 5, note that 
.|ψ〉a,b,c ∈ γ((EQ

1 , λ1)), .CXa,b |ψ〉a,b,c ∈ γ(CX�
c,a(EQ

1 , λ1)) and . CXc,a |ψ〉a,b,c ∈
γ(CX�

a,b(EQ
1 , λ1)).
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Measurement .(M �
q). In this case, we need to approximate which variables may be 

affected by the measurement. The semantics of measurement is formally defined 
as: 

. M �
q(EQ, λ) = (E [¬Q], L[Q ← Z, T ← �L]),

where .Q = EQ(q) and .T = (EQ{q} \ Q). In particular, when a variable . q is 
separable, .Q = {q} and .T = ∅ and the measurement simply makes . q collapse 
to a base state. Instead, if . q is inseparable from other variables, all variables 
d-inseparable from . q collapse to .Z (making them separable), while all other 
variables inseparable and not d-inseparable from . q are altered in a way that 
cannot be modelled given an abstract state. For this reason, we can only label 
these variables with .�L. 

Language Abstract Semantics. Now we have all the ingredients to define the 
abstract semantics of the language, which we define as a function . � · �� : A

Q →
A

Q, for each instruction of our language: 

.

� skip ��(EQ, λ) = (EQ, λ)

� h(q) ��(EQ, λ) = H�
q(EQ, λ)

� t(q) ��(EQ, λ) = T �
q (EQ, λ)

� cx(p, q) ��(EQ, λ) = CX�
p,q(EQ, λ)

� NonZero(b) ��(EQ, λ) = M �
q(EQ, λ)

� Zero(b) ��(EQ, λ) = M �
q(EQ, λ)

� c1; c1 ��(EQ, λ) =� c2 ��(� c1 ��(EQ, λ))

� c1 ⊕ c2 ��(EQ, λ) =� c1 �� � � c2 ��

� c∗ ��(EQ, λ) =
⊔

n

� cn ��(EQ, λ).

(6) 

where .H�
q , T

�
q , CX�

p,q,M
�
q : A

Q → A
Q represent the abstract semantics of gates 

and measurement. 
Finally, we formulate the soundness of our abstraction in terms of the con-

cretisation function . γ [ 8]. 

Proposition 1 (Soundness). Let .Q be a set of variables, .∀l ∈ label, 
.∀(EQ, λ) ∈ A, .� l � ◦ γ(EQ, λ) ⊆ γ ◦ � l ��(EQ, λ). 

Evidence in support of this proposition is shown by the examples in Sect. 7.1. 
Since every label is sound, by induction on . c we can prove that . � c �◦γ(EQ, λ) ⊆
γ ◦ � c ��(EQ, λ). 

7 Computing the Analysis 

To compute the analysis on the CFG, we need to compute the abstract state 
.(EQ, λ) for each node of the CFG, namely at each program point of the analysed
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program [ 32]. The analysis we propose is forward; namely, the state .(EQ, λ) at 
node . u, denoted .(EQ, λ)[u], depends on the pairs .{(EQ

i , λi)} of its predecessors 
and the label semantics of the edges entering in . u. Given  a CFG  . G, for all node 
. u in .G (program points of the represented program), we define the following 
system of equations: 

..(EQ, λ)[u] =

{
(EQ

0 , λ0) if u = start
⊔ {

� l ��(EQ, λ)[u]
∣
∣
∣ (u, l, v) ∈ G

}
otherwise

(7) 

where .(EQ
0 , λ0) is the initial state. Since we assume that all variables 

are initialised to .|0〉, the initial state is the state where all variables 
are separable and labelled as . Z. So if  .Q = {a, b, c} then .(EQ

0 , λ0) . =
.([({a},0), ({b},1), ({c},2)], {0,1,2,:Z}). 

This system can be solved by the least fixed point obtaining the best solution 
for each program point [ 21]. 

Proposition 2. For all statement .l ∈ label, the abstract semantics . � l �� : A → A

is monotonic w.r.t. . �. 

Since the semantics is monotonic, it is granted that we reach the fix-point. 
We provide a prototype of our procedure 4 that analyses the quantum lan-

guage used to present the analysis. Together with the prototype, we provide 
examples showing how our analysis works in various scenarios. In particular, 
we analyse the examples contained in [ 30](superdense coding [ 4], Deutsch algo-
rithmn [ 9] and the Creation and disentanglement of the GHZ state) and in [ 27] 
(teleportation circuit and GHZ), obtaining the same results as [ 30] and improv-
ing [ 27]. We also provide some examples showing how we lose precision in the 
presence of control flow, showing when our analysis is sound but incomplete. 

7.1 Showing the Analysis 

Consider the example in Fig. 4. In Fig. 4, we show the CFG to the program 
.dGHZ ::= h(a); cx(a, b); cx(a, c); cx(c, b); t(b); cx(c, a) displaying for each pro-
gram point the concrete state in blue and the abstract state in black. This 
program creates the GHZ states up to node 3, then ’disentangles’ . b with the 
first . cx, then changes the relatives phase with the . t gate and then disentangles . c
with the last . cx. In the abstract domain up to node 3, we construct the state in 
which .{a, b, c} are d-inseparable. Then we are able to keep track in the abstract 
state the entanglement cancellation made by the .cx gate in edges . (3, cx(a, b),4)
and .(5, cx(c, a),6) and the phase change made by the . t gate in edge .(4, t(b),5). 
We show how our analysis works with control flow in Fig. 5. We consider the 
program .prog ::= h(a); cx(a, b); h(c); if (b) then {cx(a, c)} else {cx(c, b)}, writ-
ing .|φ〉 to indicate the state .1/√

2(|0〉 + |1〉) and .|ϕ〉 to indicate .1/√
2(|0〉 − |1〉).

4 The following GitHub repository NicolaAssolini98/EntaglementAnalysis contains 
our prototype implemented in Python. 

https://github.com/NicolaAssolini98/EntaglementAnalysis
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In this example, we start in node 1 with a state where . a and . b form a Bell  
state and are therefore abstracted as being entangled d-inseparable. In nodes 
2 and 3, due to the measurement of . b, both . a and . b collapse to a basis state. 
Since . a and . b are d-inseparable, they are both labelled with . Z. In node  4, the  
concrete state is obtained by merging the semantics of the two paths, while the 
abstract state is the lub between . CX�

a,c([({a},0),({b},1),({c},2)],{(0, 1):Z,2:X})
and .CX�

c,b([({a},0),({b},1),({c},2)],{(0, 1) : Z,2 : X}), which correspond to: 
. ([({a},0),({b},1),({c},2)],{(0, 1) : Z,2 : X}) � ([({a},0),({b, c},1)],{(0) : Z,1 : X})
= .[({a},0),({c},1),({b},1)],{0 :Z,1 :�L}. In both examples, using the labels, we 
can approximate the variable’s state during the execution of the program. 

8 Related Works 

Yu et al. [ 38] propose an abstraction of quantum domains using the abstract 
interpretation formalism to achieve an abstract simulation of quantum circuits. 
Another work [ 11] explores the relation between quantum Hoare logic, quan-
tum incorrectness logic and abstract interpretation in the context of quantum 
programs. 

Fig. 4. The .dGHZ CFG (a), and a table representing concrete and abstract states for 
each node (b). 

An entanglement analysis was introduced in [ 26,27] for a simple while lan-
guage that uses abstract semantics based on partitions. In this work, Perdrix 
uses partitions to represent entangled variables and two labels (.X and . Z) to  
support the analysis. Moreover, in this approach, the labels are related to single 
variables, not to partitions, and every entangled variable is labelled as . �. In  
this way, this approach fails to detect when a gate or a measurement removes 
entanglement, to track the state of entangled variables, and to approximate the 
.T gate. For instance, in the examples in Fig. 4 from the previous section, the
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Fig. 5. The .prog CFG (a), and a table representing concrete and abstract states for 
each node (b), where .|φ〉 = 1/

√
2(|0〉 + |1〉) and . |ϕ〉 = 1/

√
2(|0〉 − |1〉)

Perdrix analysis computes in node 3 the abstract state . ({a, b, c}, {a, b, c → �L})
that as no information. Consequently, after node . 4, the three variables will always 
be considered entangled regardless of the gates applied. 

Other systems have been developed to detect entanglement. Honda’s app-
roach [ 18] is based on an abstract domain that uses abstract density matrices. 
In this way, it is possible to abstract more information about entanglement, but 
the space of the abstract states explodes with the program’s size. In [ 29,30], Rand 
introduces a type system based on Gottesman’s [ 14] representation of Clifford 
gates (. H,. S,.CX). This approach proposes an entanglement analysis, although 
working at the circuit level (i.e., no control flow) and limited to Clifford gates 
and measurement. This approach cannot be applied to the program in Fig. 5 
due to the presence of the if statement and to the program in Fig. 4 due to 
the presence of the . T gate. Since our approach is based on abstract interpreta-
tion instead of type systems, it can be easily integrated with other analyses to 
improve precision. 

The design of the language Twist [ 39] includes the verification of the separa-
bility of states, which is based on a type system with annotation (that must be 
inserted manually) and dynamic checking (that uses classical simulation). Also, 
the Scaffold compiler [ 19] includes an analysis of entanglement, which works at 
the circuit level, considering only the circuit composed by controlled-.NOT gates. 

9 Conclusion 

In this paper, we have introduced a static analysis for quantum programming 
languages, building on the abstract domain for entanglement analysis developed
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in [ 2]. By extending the abstract domain with additional labels, we provide 
a more precise and practical method for analysing quantum entanglement. Our 
static analysis framework not only identifies entangled variables but also provides 
an abstract description of the program state during a computation, which can 
potentially be used as a basis for other analyses. Our approach improves other 
analyses proposed in the literature, such as [ 27], by enhancing precision while 
avoiding the exponential growth in computational complexity [ 18]. Additionally, 
the adaptability of our method within a while-language framework makes it a 
versatile tool for various quantum programming scenarios. In summary, our work 
contributes to the effective reasoning about quantum programs by providing a 
robust framework for entanglement analysis and quantum state approximation. 

As a future development, we aim to implement our analysis so that it can 
be used in real quantum programming languages such as Qiskit [ 1], Qrisp [ 31], 
Guppy [ 28] or Isq  [  16]. To this end, we plan to integrate our approach into 
existing analysis tools, such as LiSA [ 12]. Future research will also explore further 
refinements to our analysis framework, e.g. by considering abstractions of the 
entanglement property along the lines of [ 10]. Moreover, we plan to define a 
probabilistic version of our analysis to better deal with the probabilistic control 
flow. 
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